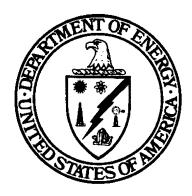
GWOU ADMINISTRATIVE RECORD SECTION TITLE: GW-300-302-1.13


DOE/GJ/79491-942 CONTRACT NO. DE-AC01-02GJ79491

COMPLETION REPORT FOR THE FROG POND GROUNDWATER INVESTIGATION

WELDON SPRING SITE REMEDIAL ACTION PROJECT WELDON SPRING, MISSOURI

JANUARY 2004

REV. 0

U.S. Department of Energy Grand Junction Office Weldon Spring Site Remedial Action Project Printed in the United States of America. Available from the National Technical Information Service, NTIS, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

NTIS Price Codes - Printed Copy: A03

Microfiche: A01

DOE/GJ/79491-942

Weldon Spring Site Remedial Action Project

Completion Report for the Frog Pond Groundwater Investigation

Revision 0

January 2004

Prepared by

U.S. DEPARTMENT OF ENERGY Grand Junction Office DE-AC01-02GJ79491

Weldon Spring Site Remedial Action Project Contract No. DE-AC01-02GJ79491	
	Rev. No. 0
PLAN TITLE: Completion Report for the Frog Pond Groun	ndwater Investigation

APPROVALS

Bol Cet	1-30-04
Originator	Date
War L. Oaks	1-30-04
Project Director	Date

TABLE OF CONTENTS

SECT	<u>ION</u>	AGE
1.	INTRODUCTION	1
	1.1 Purpose and Objective	1
	1.2 Background	1
	1.3 Document Organization	1
2.	WELL DRILLING AND INSTALLATION	3
	2.1 Drilling and Sampling	3
	2.2 Packer Testing	3
	2.3 Well Installation.	5
	2.4 Well Development	5
3.	HYDROGEOLOGIC DATA ANALYSIS	6
<i>J</i> .	3.1 Bedrock Stratigraphy	6
	3.2 Bedrock Topography	6
	3.3 Fracture Frequency/RQD Results	6
	3.4 Packer Testing	8
4.	ANALYTICAL DATA	10
т.	4.1 Nitroaromatic Compounds in Groundwater	10
	4.2 General Groundwater Quality,	12
5.	POTENTIAL SOURCE SURVEY	25
<i>J</i> .	5.1 Soil Survey	25
	5.2 Groundwater Survey.	27
6.	QUALITY ASSURANCE.	28
U.	6.1 Data Evaluation	28
•	6.2 Conclusions	28
7.	SUMMARY AND CONCLUSIONS.	30
<i>/</i> •		30
	7.1 Summary	30
8.		31
٥.	REFERENCES	31
APPEN	NDIXES	
A	Geologic Logs	
	Packer Test Field Sheets	
	Monitoring Well Details	
	Well Development Records	
В	Analytical Data	
\mathbf{C}	Quality Control Data	
	Nitroaromatic Soil/Source Investigations in the Frog Pond Area	

LIST OF FIGURES

NUMBER	· •	<u>PAGE</u>
Figure 2-1	New Monitoring Well Locations	4
Figure 3-1	Bedrock Topography in the Frog Pond Area	7
•	1,3,5-TNB Distribution in the Weathered Zone	
Figure 4-2	2,4,6-TNT Distribution in the Weathered Zone	14
Figure 4-3	1,3-DNB Distribution in the Weathered Zone	. 15
_	2,4-DNT Distribution in the Weathered Zone	16
Figure 4-5	2,6-DNT Distribution in the Weathered Zone	17
Figure 4-6	2-Amino-4,6-DNT Distribution in the Weathered Zone	18
_	4-Amino-2,6-DNT Distribution in the Weathered Zone	19
_	2-NT Distribution in the Weathered Zone	20
_	3-NT Distribution in the Weathered Zone	21
_	0 4-NT Distribution in the Weathered Zone	
	Trenching Locations Associated with WSOW Production Line #1	

LIST OF TABLES

NUMBE	<u>P</u>	<u>AGE</u>
Table 2-1	Well Construction Details	5
Table 3-1	Fracture Fequency and RQD Data	8
	Summary of Packer Testing Results	
Table 4-1	Nitroaromatic Compound Data (a) for the New Monitoring Wells	10
Table 4-2	Nitroaromatic Compound Data (a) for the existing Nearby Monitoring Wells.	11
Table 4-3	Groundwater Quality Data	23
	Summary of Breakdown Products and Possible Source Indicators	
Table 6-1	Number of Quality Control Samples	28

1. INTRODUCTION

Historical highs for nitroaromatic compounds have been reported over the past several years in wells in the vicinity of Frog Pond, most notably MW-2012. Concentrations of nitroaromatic compounds have increased at this location since 1997. Initial increases were attributed to soil remediation activities performed at the Department of Energy in this area and possibly remedial activities performed by the Corps of Engineers in nearby Army Lagoon 1.

1.1 Purpose and Objective

The purpose of this groundwater investigation was to obtain data from the existing and newly installed monitoring wells in order to delineate the areal extent of groundwater contamination in the Frog Pond area. Data was also used in an effort to identify the source(s) or nitroaromatic impact to the groundwater in this area.

The objective of these groundwater field studies was to identify the groundwater flow directions in the vicinity of Frog Pond and the possible preferential migration pathways in this area. Data were also to be obtained to determine the areal extent of groundwater impact in this area.

1.2 Background

The Frog Pond is located in a pre-glacial drainage valley extending north from the site as determined from the bedrock topography and hydraulic conductivity distributions in this area. Review of pre-ordnance works topography shows that both Frog Pond and Army Lagoon 1 were constructed in a stream drainage, which is coincident with the preglacial drainage. Previous site characterization indicates that these pre-glacial drainages are locations for preferential groundwater and contaminant movement.

Groundwater in Frog Pond has exhibited elevated nitroaromatic compound impact since monitoring was initiated in 1987. Prior to 1997, the area of highest nitroaromatic compound impact was in the vicinity of MW-2013, located south of MW-2012. This well; however, was installed closer to where the production houses for TNT Line #1 were located.

1.3 Document Organization

- Section 2 <u>Drilling and Well Installation</u> A summary of the well installation activities and interpretation of the geologic and hydrogeologic data obtained during soil and rock drilling.
- Section 3 <u>Hydrogeologic Data Analysis</u> A summary of the hydrogeologic information obtained during drilling and testing and baseline groundwater levels.
- Section 4 Analytical Data A summary of the analytical data obtained from the pumping wells and the surrounding monitoring wells and springs.

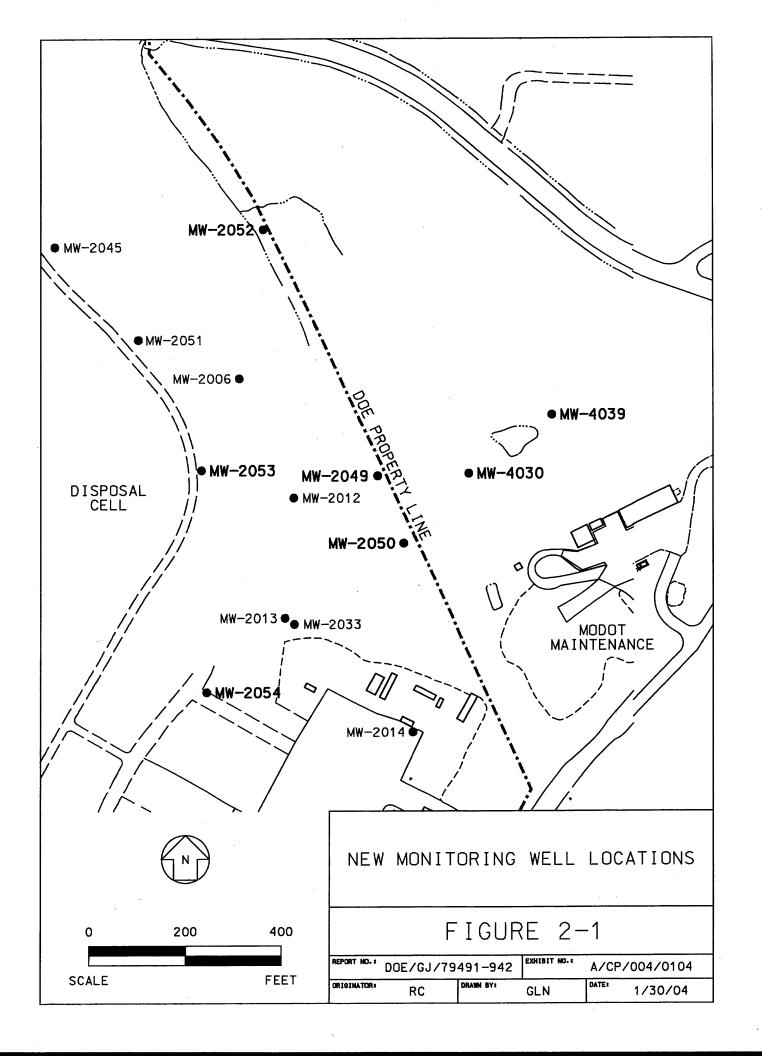
COMPLETION REPORT FOR THE FROG POND GROUNDWATER INVESTIGATION

Section 5	<u>Potential Source Survey</u> – A summary of the historical data review and exploratory trench performed in support of this investigation.
Section 6	<u>Quality Control</u> – A summary of data evaluation performed on the analytical data to determine whether data quality objectives were met.
Section 7	<u>Conclusions</u> – An overall summary of the effectiveness for improving contaminant removal in the study area by implementing the modifications evaluated under this study and a determination of the effects of extracting groundwater on contaminant levels in Zone 1.
Section 8	<u>References</u> – A summary of the reference documents used in the preparation of this report.
Appendix A	Geologic logs, packer test field sheets, and monitoring well details.
Appendix B	Analytical data.
Appendix C	Quality control data.
Appendix D	Nitroaromatic Soil/Source Investigation in the Frog Pond Area

2. DRILLING WELL INSTALLATION

Seven monitoring wells were installed in support of this groundwater investigation (Figure 2-1). Three of the wells were drilled beginning in October 2000 and development was completed in December 2000. Four additional wells were drilled beginning in November 2001 and well development was completed in January 2002. All work was performed as specified in *Frog Pond Groundwater Investigation Sampling Plan* (Ref. 1) and in the task description for Work Package WP-487A, *Subsurface Drilling Services*.

2.1 Drilling and Sampling


The monitoring wells were drilled at the locations identified in the *Frog Pond Groundwater Investigation Sampling Plan* (Figure 2-1). Drilling and well installation were performed to supplement the existing monitoring well network and to provide additional hydrogeologic characterization data related to the study area. Subsurface data indicate the presence of linear bedrock lows on the surface of the Burlington-Keokuk Limestone. These lows resemble surface drainages and appear to be preglacial channels formed by surface erosion of the exposed Mississippian limestone. Testing indicates that hydraulic conductivity is typically highest in wells completed in these bedrock lows.

Soil drilling and rock coring was performed using a CME-750 all-terrain drill rig. Hollow stem augers having an inside diameter (ID) of 4-1/4 inches and outside diameter (OD) of 8-1/4 inches were used to drill through the overburden. Soil sampling using a split-spoon sampler was performed only near the base of the soil zone in order to identify the top of the bedrock. Soil was described using the Unified Soil Classification System. Data obtained from the soil descriptions was consistent with previous investigations.

Core drilling was performed in all 6 boreholes once the top of rock was determined by either auger refusal or visual inspection of samples. Temporary casing with an ID of 3-1/8 inches was placed to the top of rock. Nominal 2-inch diameter core was obtained using NQ wireline drilling methods producing a 3-inch diameter borehole. A split inner barrel was used to help maintain core integrity. Coring was continued until the field geologist determined that the depth was sufficient to place the monitoring well. Typically, coring was stopped approximately 15-ft below the static groundwater level. Geologic logs are included in Appendix A. Data obtained from the rock descriptions was consistent with previous investigations in this area.

2.2 Packer Testing

During drilling of the monitoring wells, the bedrock was pressure tested (packer tested) using methods described in the *Groundwater Manual* (Ref. 2) at approximately 10-ft intervals throughout the length of the boring. At the completion of a core run, the inner barrel was removed and the hole was flushed with water to remove drill cuttings. The drill pipe and outer core barrel were then pulled out of the borehole. A single packer assembly was installed in the borehole and inflated at the top of the test interval. The

open hole below was then pressurized by pumping water directly into the boring through a water pipe extending through the packer. Test pressure and flow rates were measured with a pressure gauge and water meter, respectively. Results from the packer testing are presented in Section 3.

2.3 Well Installation

After the completion of coring and packer testing, the vertical boreholes were reamed from 3-inch diameter to 6-inch diameter in order to construct a well. The hollow stem augers were left in the hole to serve as casing through the soil zone. Reaming was accomplished using an Ingersoll-Rand TH-60 air rotary drill equipped with a tri-cone bit.

The 7 monitoring wells were constructed using 2-inch stainless steel (316) casing and screen (0.010-inch slot). The filter pack was constructed of silica sand (20-40 gradation). The well was surged to compact the sand during installation to prevent bridging. Bentonite pellets formed a seal above the filter pack and bentonite slurry was used, as the annular seal to within 2-feet of the ground surface. A summary of the well construction is provided in Table 2-1. Well construction details are presented in Appendix A.

Table 2-1 Well Construction Details

Well ID	Coord	inates	Elev	ation	Screened	Total
	Northing	Easting	Ground	Top of Casing	Interval (ft bgs)	Depth (ft)
2049	1043408.75	756270.80	634.12	637.02	39.0 – 44.0	45.0
2050	1043266.62	756323.47	636.62	640.11	39.0 – 44.0	44.0
2052	1043928.24	756051.16	622.29	624.82	30.0 – 40.0	41.0
2053	1043421.87	755919.13	640.76	643.19	45.0 - 55.0	56.0
2054	1042960.26	755929.99	650.04	652.58	50.0 - 60.0	61.0
4030	1043403.12	756457.20	642.54	645.04	50.0 - 55.0	56.0
4039	1043537.82	756647.70	646.40	648.94	52.0 - 62.0	62.3

Note: bgs = below ground surface

2.4 Well Development

Following a minimum of 24 hours after well completion, all wells were developed using a pump and surge technique combined with over-pumping. Development was accomplished by initially removing water and sediment by hand bailing. The bailer was raised and lowered several times within the water column to provide a surging action to breakdown skin effects on the borehole caused by the drilling process. After completion of surging using the hand bailer, the well was pumped using a Grundfos Redi-Flo2 pump to remove groundwater. Three well volumes were removed from each well prior to determining stabilization. Physical parameters including temperature, conductivity, turbidity, and pH were measured until all were stable and turbidity-free water was noted. Well development records are presented in Appendix A.

3. HYDROGEOLOGIC DATA ANALYSIS

3.1 Bedrock Stratigraphy

The Burlington-Keokuk Limestone unit has been divided into two units based primarily on the degree of weathering: the upper weathered unit and the lower unweathered unit. The weathered unit typically exhibits a strongly weathered subzone that shows a considerably higher degree of weathering and is characterized by vuggy, weakly cemented chert breccia with minor limestone fragments in a sandy, clayey matrix (Ref. 3). This zone is qualitatively recognized as the strongly weathered subunit and is generally found at the top of the weathered unit in this portion of the site, although it is discontinuous across the entire site. Hydrologic testing in the weathered and unweathered Burlington-Keokuk generally shows higher hydraulic conductivity values in the weathered unit. The strongly weathered subunit averages still higher results than the weathered unit (Ref. 3).

3.2 Bedrock Topography

Drilling performed at the chemical plant and surrounding area has identified linear bedrock lows on the surface of the Burlington-Keokuk Limestone (Ref. 3). These topographic lows resemble surface drainages and appear to be pre-glacial channels formed by surface erosion of the Mississippian Limestone.

Revision of the bedrock topography using the new top of rock data from the monitoring wells indicates the presence of the paleochannel extending to the north through the Frog Pond area (Figure 3-1). This bedrock low follows the pre-1950's topography of the area where a creek channel flowed to the west. Contaminant concentrations obtained from the wells support the conclusion that the flow through this feature is to the north.

3.3 Fracture Frequency/RQD Results

During the drilling of the wells, fractures were observed in the bedrock core and noted on the borehole logs (Appendix A). Fracture frequency and Rock Quality Designation (RQD) were also documented on the logs. RQD is a qualitative determination of rock quality calculated by taking the cumulative length of recovered solid pieces of core that are 4 in. or greater in length in a core run divided by the length of the core run, expressed as a percentage. A summary of the fracture data is presented in Table 3-1.

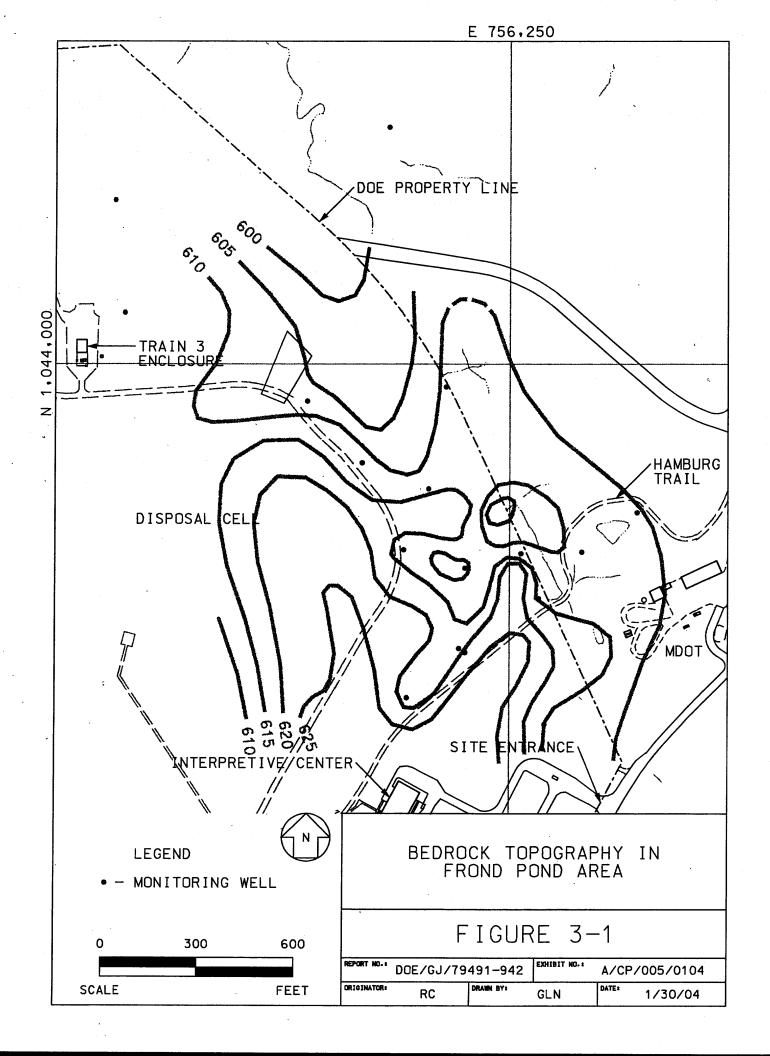


Table 3-1 Fracture Frequency and RQD Data

Location	Stratigraphic Unit	Average Fracture Frequency (per foot)	RQD % (Weighted Average)
MW-2049	Strongly weathered Burlington-Keokuk	5	34%
10100-2049	Weathered Burlington-Keokuk	5	30%
MW-2050	Strongly weathered Burlington-Keokuk	4	26%
10100-2030	Weathered Burlington-Keokuk	3	19%
MW-2052	Strongly weathered Burlington-Keokuk	Not determined	17%
10104-2002	Weathered Burlington-Keokuk	Not determined	22%
MW-2053	Strongly weathered Burlington-Keokuk	2	17%
10100-2000	Weathered Burlington-Keokuk	3	43%
MW-2054	Strongly weathered Burlington-Keokuk	Not determined	66%
10100-2004	Weathered Burlington-Keokuk	5	56%
MW-4030	Strongly weathered Burlington-Keokuk	5	16%
19199-4030	Weathered Burlington-Keokuk	5	33%
MW-4039	Strongly weathered Burlington-Keokuk	Not present	Not present
10104-4039	Weathered Burlington-Keokuk	3	45%

Fracture frequencies per foot were similar in core from the strongly weathered unit and weathered unit of the Burlington-Keokuk Limestone in this portion of the site. Average fracture frequencies ranged from 2 to 5 fractures per foot. The RQD averages for the strongly weathered and weathered units were also similar and ranged from 16% to 66%. Review of the geologic logs indicates more core loss and rubble zones in the strongly weathered unit than in the weathered unit. These results were consistent with previous geologic investigations of the Burlington-Keokuk Limestone at the chemical plant.

3.4 Packer Testing

As the coring progressed, hydraulic packer testing was performed at successive intervals in the borehole to determine the hydraulic conductivity for discrete intervals of the limestone. An inflatable rubber packer was expanded within the core hole, typically 10-feet above the bottom of the hole. Water was pumped into the hole below the packer at various pressures; typically 10 psi increments. A flow meter recorded the amount of water pumped into the formation. The results from the testing are provided in Table 3-2. The results from the testing followed trends noted from previous packer testing at the site, such as decreasing permeability with depth and the highest permeability exhibited in the strongly weathered portion of the Burlington-Keokuk Limestone. Packer test field sheets are contained in Appendix A.

Table 3-2 Summary of Packer Testing Results

Well	Test Interval	Test Number	Pressure (psi)	K (cm/s)	Average K (cm/s)
		1	15	8 x 10 ⁻⁴	
MW-2049	28.0 – 35.0	2	35	7 x 10 ⁻⁴	7 x 10 ⁻⁴
	35.0 – 45.0	3	50	7 x 10 ⁻⁴	1 / X 10
		4	20	7 x 10 ⁻⁴	1
		1	25	2 x 10 ⁻⁵	
		2	40	4 x 10 ⁻⁴	3 x 10 ⁻⁴
		3	50	6 x 10 ⁻⁴	

Well	Test Interval	Test Number	Pressure (psi)	K (cm/s)	Average K (cm/s)	
		1	20	1 x 10 ⁻⁴		
MW-2050	29.8 – 37.5	2	30	3 x 10 ⁻⁴	3 x 10 ⁻⁴	
11111 2000	20.0 - 07.0	3	35	6 x 10 ⁻⁴	3 × 10	
		4	20	9 x 10 ⁻⁵		
		1	5	2 x 10 ⁻³		
	13.0 – 23.0	2	10	2 x 10 ⁻³	1 040-3	
	13.0 - 23.0	3	15	2 x 10 ⁻³	2 x 10 ⁻³	
		4	5	3 x 10 ⁻³	1	
		1	10	1 x 10 ⁻³		
MW-2052	24.0 – 35.0	2	15	1 x 10 ⁻³	1	
10100-2002	24.0 - 35.0	3	25	1 x 10 ⁻³	1 x 10 ⁻³	
		4	10	1 x 10 ⁻³		
		1	15	5 x 10 ⁻⁵		
	05.040.0	2	25	5 x 10 ⁻⁵	ļs	
	35.0 x 40.0	3	35	5 x 10 ⁻⁵	5 x 10 ⁻⁵	
		4	15	4 x 10 ⁻⁵		
		1	10	4 x 10 ⁻⁴		
		2	20	4 x 10 ⁻⁴		
	29.0 – 39.0	3	30	4 x 10 ⁻⁴	4 x 10 ⁻⁴	
		4	10	4 x 10 ⁻⁴		
		1	15	2 x 10 ⁻³		
		2	25	2 x 10 ⁻³	,	
MW-2053	40.0 – 50.0	3	40	1 x 10 ⁻³	2 x 10 ⁻³	
		4	15	2 x 10 ⁻³		
		1	15	2 x 10 ⁻³		
	45.0 – 55.0	2	30	2 x 10 ⁻³		
		3	45	1 x 10 ⁻³	2 x 10 ⁻³	
		4	15			
		1	10	2 x 10 ⁻³		
	}	2	20	1 x 10 ⁻⁵		
	32.0 – 41.0	3	30	1 x 10 ⁻⁵	1 x 10 ⁻⁵	
		4		2 x 10 ⁻⁵		
•		1	10 15	1 x 10 ⁻⁵		
		2	30	1 x 10 ⁻³		
MW-2054	44.0 – 53.0	3		1 x 10 ⁻³	1 x 10 ⁻³	
			45	9 x 10 ⁻⁴		
		4	15	1 x 10 ⁻³		
	 	1	15	4 x 10 ⁻⁵		
	53.0 - 60.0	2	30	6 x 10 ⁻⁵	6 x 10 ⁻⁵	
		3	50	7 x 10 ⁻⁵		
-	25.0 45.0	4	15	6 x 10 ⁻⁵		
	35.0 – 45.0		0	1 x 10 ⁻³	1 x 10 ⁻³	
NRM 4000	-	1	35	2 x 10 ⁻⁵		
MW-4030	45.0 – 53.0	2	45	5 x 10 ⁻⁵	6 x 10 ⁻⁵	
	<u> </u>	3	55	1 x 10 ⁻⁴	V. 10	
		4	45	5 x 10 ⁻⁵		
	460 40- -	1	15	2 x 10 ⁻³		
	42.0 – 49.5	2	25	2 x 10 ⁻³	2 x 10 ⁻³	
101/ 4000		3	15	2 x 10 ⁻³		
MW-4039	<u> </u>	1	25	9 x 10 ⁻⁶		
	49.5 – 58.8 –	2	40	1 x 10 ⁻⁵	9 x 10 ⁻⁶	
	10.0 00.0	3	55	1 x 10 ⁻⁵	9 % 10	
		4	25	8 x 10 ⁻⁵		

4.0 ANALYTICAL DATA

4.1 Nitroaromatic Compounds in Groundwater

Six primary nitroaromatic compounds and 5 breakdown products were monitored in the new monitoring wells and other nearby wells to establish the areal extent of groundwater impact and to determine possible sources for this impact. Summaries of the data for the new wells and the existing nearby wells are presented in Tables 4-1 and 4-2, respectively. Analytical data for each sampling event is contained in Appendix B.

Table 4-1 Nitroaromatic Compound Data^(a) for the New Monitoring Wells

	Nitroarom	T Tompo	ana Data		Well Number			
– Fara	ameter	2049	2050	2052	2053	2054	4030	4039
Nitroaron	natic Compo	ounds (μg/l)				· · · · · · · · · · · · · · · · · · ·		
1,3,5-	Detects/ Total	14/17	16/17	10/10	10/10	7/10	10/10	0/10
TNB	Mean	0.28	4.3	2.9	7.3	0.16	3.1	
IND	Max.	0.81	8.0	3.7	9.2	0.46	7.1	ND
	Min.	ND	ND.	2.2	5.7	ND-	0.16	ND
	Detects/ Total	2/17	8/17	3/10	3/10	2/10	9/16	0/10
1,3-DNB	Mean	0.20	0.12	0.05	0.07	0.04	0.07	
	Max.	1.8	0.32	0.10	0.23	0.06	0.16	ND
	Min.	ND	ND	ND	ND	ND	ND	ND
2,4,6-	Detects/ Total	7/17	3/17	9/10	9/10	0/10	10/10	1/10
2, 4 ,0- TNT	Mean	0.81	0.11	0.47	6.6		1.3	0.04
1141	Max.	5.5	0.73	0.61	9.9	ND	2.3	0.12
	Min.	ND	ND	ND	ND	ND	0.38	ND
	Detects/ Total	15/17	16/17	7/10	5/10	9/10	14/16	0/10
2,4-DNT	Mean	21	22	0.09	0.12	3.4	0.18	****
	Max.	78	45	0.13	0.33	13	0.21	ND
	Min.	ND	ND	ND	ND	ND	ND	ND
	Detects/ Total	17/17	16/17	7/10	9/10	7/10	15/16	2/10
2,6-DNT	Mean	72	6.1	0.24	5.4	8.3	0.42	0.08
	Max.	160	21	0.39	25	32	0.81	0.31
	Min.	34	ND	ND	ND	ND	ND	ND
	Detects/ Total	1/17	1/17	1/10	1/10	2/10	0/16	4/10
NB	Mean	0.23	0.04	0.04	0.27	0.09		0.04
	Max.	2.7	0.35	0.08	2.4	0.45	ND	0.04
	Min.	ND	ND	ND	ND	ND	ND	ND
Breakdow	n Products	(μg/l)						
2 amina	Detects/ Total	7/8	8/8	6/6	5/6	5/6	8/8	1/6
2-amino- 4,6-DNT	Mean	1.4	1.9	2.3	2.4	0.13	1.0	0.03
	Max.	2.1	3.2	3.2	3.8	0.27	1.5	0.10
	Min.	ND	1.0	1.7	ND	ND	0.69	ND
4-amino-	Detects/ Total	7/8	7/8	6/6 .	6/6	5/6	8/8	1/6
2,6-DNT	Mean	2.4	2.0	1.1	2.2	0.19	1.1	0.11
~,U DIVI	Max.	4.0	3.1	1.5	2.7	0.35	1.5	0.56
	Min.	ND	ND	0.73	1.6	ND	0.84	ND

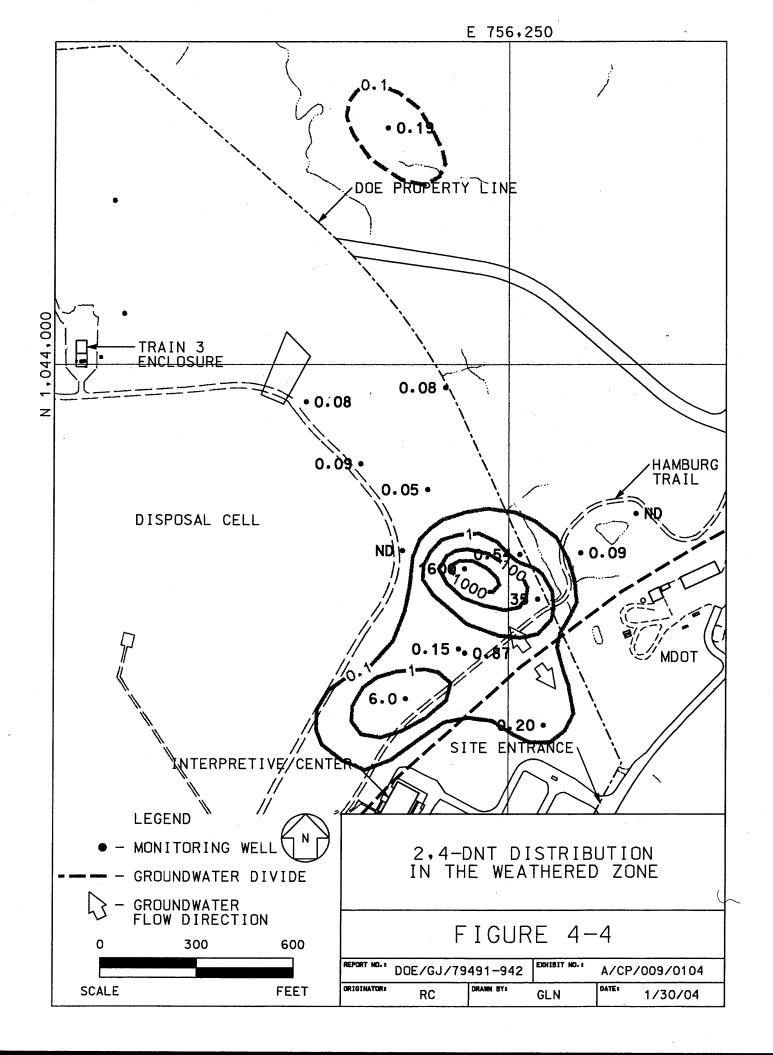
_		Well Number						
Para	ameter	2049	2050	2052	2053	2054	4030	4039
	Detects/ Total	8/8	8/8	5/6	3/6	6/6	2/8	2/6
2-NT	Mean	87	9.0	0.36	0.28	5.5	0.16	0.03
	Max.	180	23	1.1	0.78	16	0.46	0.06
	Min.	6.6	1.6	ND	ND	. 0.73	ND	ND
	Detects/ Total	7/8	7/8	0/6	1/6	4/6	1/8	1/6
3-NT	Mean	3.7	1.0		0.05	0.36	0.04	0.04
	Max.	7.5	3.1	ND	0.18	0.95	0.14	0.12
	Min.	0.6	0.01	ND	ND	ND	ND	ND
	Detects/ Total	6/8	6/8	1/6	0/6	4/6	0/8	0/6
4-NT	Mean	2.0	2.6	0.08		0.16		
	Max.	7.4	6.5	0.39	. ND	0.37	ND	ND
, , 	Min.	ND	ND	ND	ND	ND	ND	ND

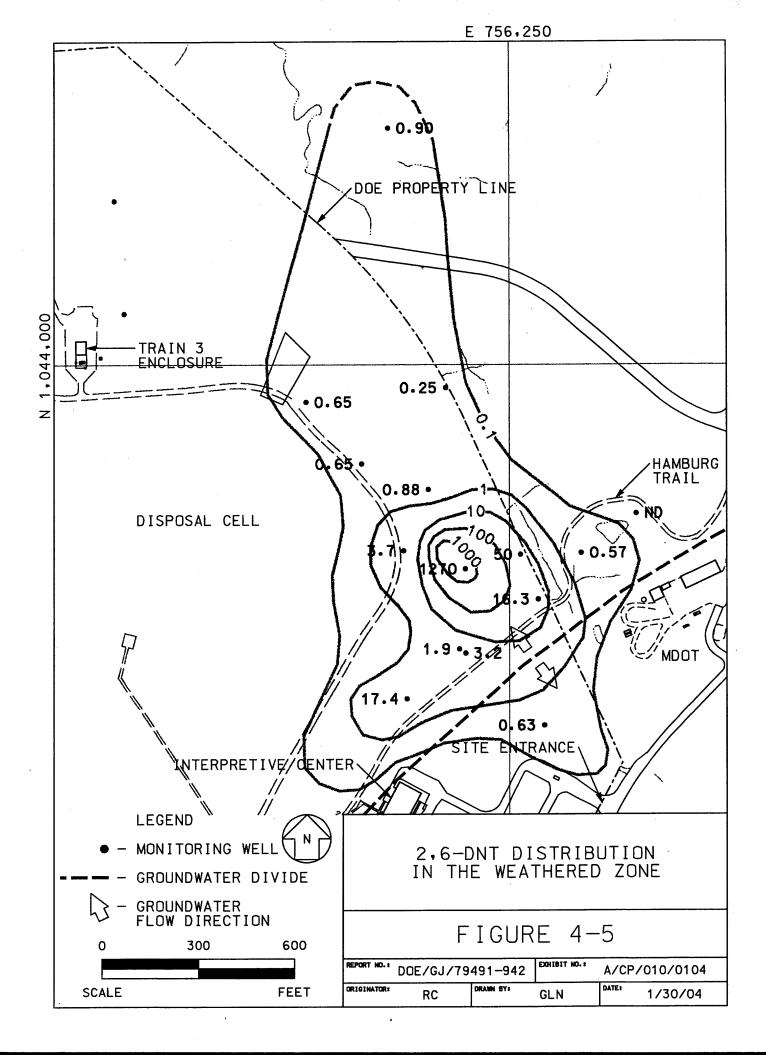
(a) Data from December 2001 through October 2003

Table 4-2 Nitroaromatic Compound Data^(a) for the Existing Nearby Monitoring Wells

Parameter		Well Number								
		2006	2012	2013	2014	2033	2045	4015		
Nitroaron	natic Compo	ounds (μg/l)					· · · · · · · · · · · · · · · · · · ·			
1,3,5- TNB	Detects/ Total	16/16	19/19	15/15	15/15	15/15	5/12	9/9		
	Mean	4.9	191	2.6	2.2	2.4	0.08	4.0		
	Max.	7.0	350	7.1	3.5	6.5	0.27	5.5		
	Min.	0.03	17	0.19	1.1	ND	ND	1.1		
	Detects/ Total	2/16	14/19	2/15	3/15	1/15	6/12	0/9		
1,3-DNB	Mean	0.07	2.8	0.06	0.05	0.04	0.08			
	Max.	0.37	18	0.23	0.07	0.10	0.16	ND		
	Min.	ND	ND	ND	ND	ND	ND	ND		
	Detects/ Total	4/16	19/19	10/15	1/15	14/15	4/13	1/9		
2,4,6- TNT	Mean	0.25	216	0.33	0.04	0.50	0.07	0.04		
1181	Max.	1.7	310	1.1	0.25	1.1	0.2	0.11		
	Min.	ND	20	ND	ND	ND	ND	ND		
	Detects/ Total	6/16	19/19	12/15	14/15	7/15	8/12	6/9		
2,4-DNT	Mean	0.08	1127	0.12	0.12	0.20	0.07	0.10		
	Max.	0.39	1800	0.36	0.34	1.1	0.10	0.47		
	Min.	ND	170	ND	ND	ND	ND	ND		
2,6-DNT	Detects/ Total	12/16	19/19	15/15	15/15	14/15	11/12·	9/9		
	Mean	0.81	947	1.1	0.44	1.2	0.61	0.78		
	Max.	1.6	1300	2.3	0.73	4.1	0.8	1.1		
	Min.	ND	560	0.47	0.21	ND	ND	0.42		
NB	Detects/ Total	1/16	1/19	0/15	2/15	0/15	1/12	1/9		
	Mean	0.12	3.9		0.11		0.04	0.06		
	Max.	1.6	69	ND	0.93	ND	0.5	0.32		
	Min.	ND	ND	ND	ND	ND	ND	ND		

Parameter		Well Number								
		2006	2012	2013	2014	2033	2045	4015		
Breakdow	n Products	(μ g/l)								
	Detects/ Total	5/5	7/7	5/5	5/5	5/5	5/5	5/5		
2-amino-										
4,6-DNT	Mean	1.5	13	1.1	0.38	1.0	0.57	2.4		
	Max.	1.7	17	1.6	0.45	1.6	0.71	2.5		
	Min.	1.2	5.8	0.6	0.3	0.2	0.4	2.2		
4-amino-	Detects/ Total	5/5	3/7	5/5	5/5	4/5	5/5	5/5		
	Mean	1.3	5.3	1.2	0.60	1.2	0.59	2.8		
2,6-DNT	Max.	1.6	13	1.6	0.71	1.9	0.69	3.0		
	Min.	1.1	ND	0.77	0.49	ND	0.45	2.6		
	Detects/ Total	4/5	7/7	2/5	1/5	3/5	1/5	1/5		
2-NT	Mean	0.31	2014	0.18	0.14	1.5	0.05	0.17		
	Max.	0.58	2300	0.44	0.57	4.6	0.11	0.75		
	Min.	ND	1500	ND	ND	ND	ND	ND		
3-NT	Detects/ Total	1/5	7/7	0/5	0/5	2/5	0/5	0/5		
	Mean	0.04	143			0.11				
	Max.	0.07	160	ND	ND	0.26	ND	ND		
	Min.	ND	110	ND	ND	ND	ND	ND		
4-NT	Detects/ Total	0/5	7/7	0/5	0/5	1/5	0/5	0/5		
	Mean		531			0.09				
	Max.	ND	770	ND	ND	0.37	ND	ND		
	Min.	ND	250	ND	ND	ND	ND	ND		


(a) Data from December 2001 through October 2003

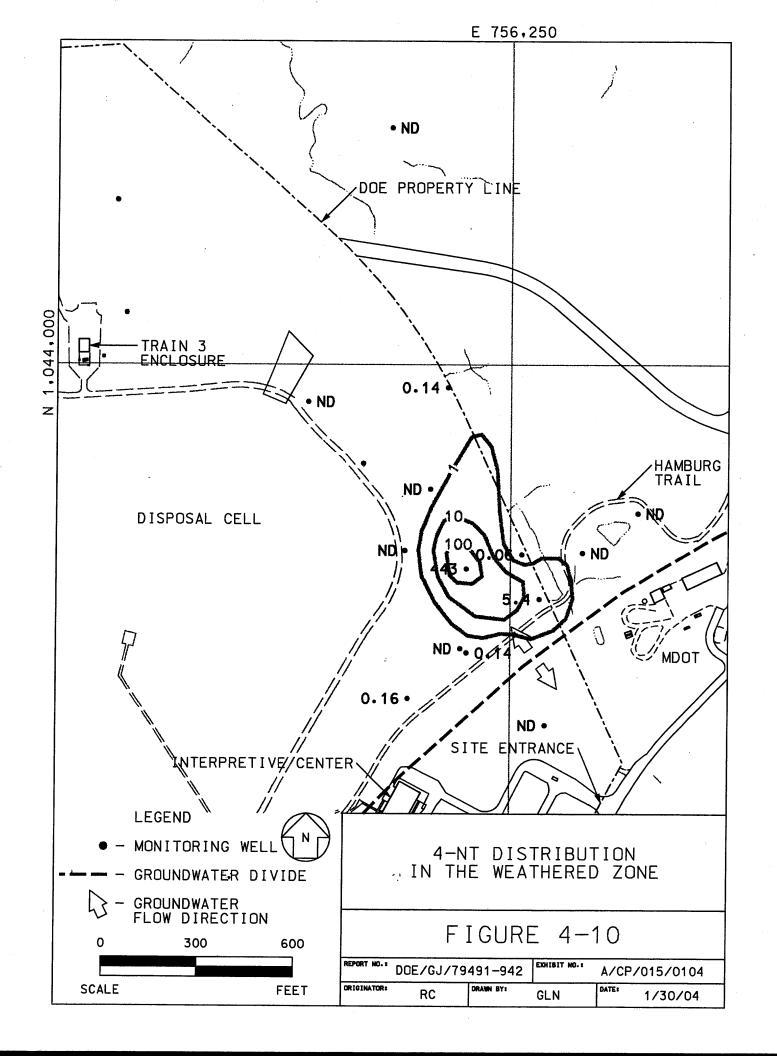

The distributions of the nitroaromatic compounds in groundwater are depicted on Figures 4-1 through 4-10. These distributions represented the average of data collected at each location during 2003 (January through October). The compounds 1,3,5-TNB, 2,6-DNT, and 2-Amino-4,6-DNT cover the larger areal extent. The remainder of the nitroaromatic compounds are centered primarily on MW-2012. Groundwater impact extends off-site to MW-4015, located north of the Frog Pond area

The distribution of nitroaromatic compounds in groundwater shows evidence of strong control by the paleochannel located in the area. The areas of greatest contamination are centered on MW-2012, which appears to be within the paleochannel itself. Elevated concentrations also occur in MW-2050 and MW-2053 that are located in bedrock lows that intersect the paleochannel. Nitroaromatic compounds extend to the north along the bedrock low as shown by elevated levels measured in MW-4015.

4.2 General Groundwater Quality

Baseline groundwater quality samples were collected from each of the newly installed wells to determine whether groundwater impact from other than nitroaromatic compounds had occurred in this area. During the initial phase of the investigation, the wells were analyzed for radiochemical parameters, metals, anions, and volatile organic compounds. Based on the results from these three wells, the wells installed under

ORIGINATOR:


RC

GLN

1/30/04

FEET

SCALE

Addendum 1 (Ref. 1) were sampled only for metals, nitrate, and uranium. A summary of the data is presented in Table 4-3.

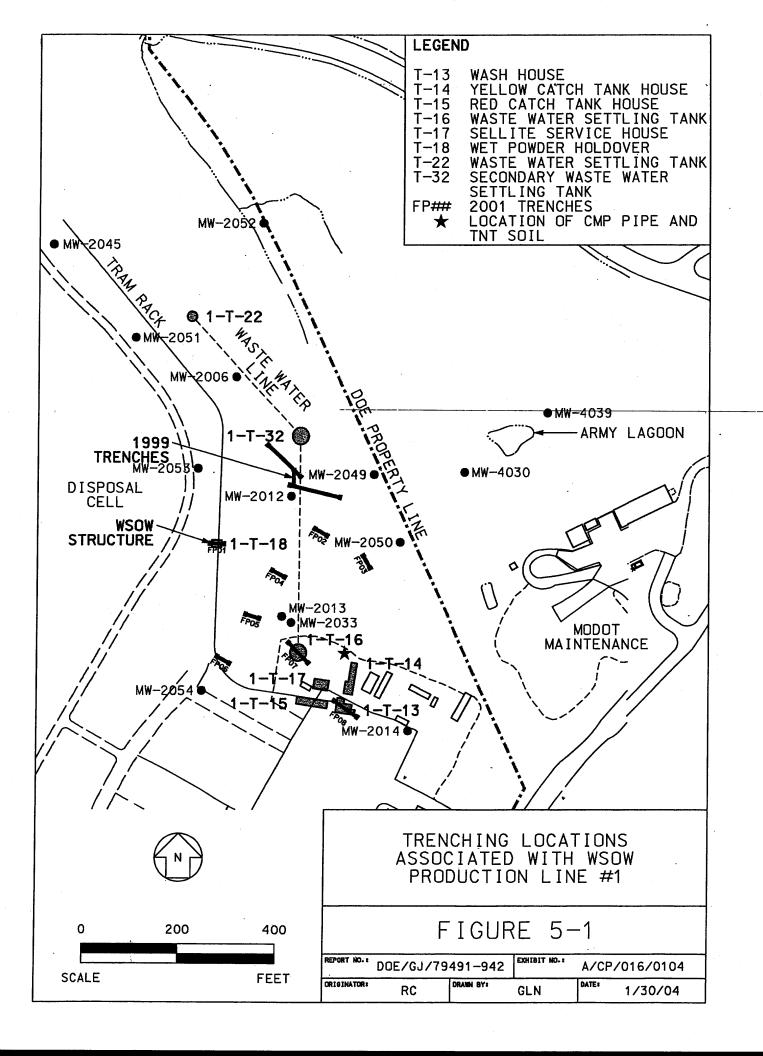
Table 4-3 Groundwater Quality Data

Parameter	Well ID								
rarameter	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039		
Metals (μg/l)			-	-		•			
Aluminum	1200	293	1110	214	< 34.3	1110	509		
Antimony	< 2.8	< 2.8	< 3.3	< 3.3	< 3.3	< 2.8	< 3.3		
Arsenic	< 1.5	< 1.5	< 1.2	< 1.2	< 1.2	< 1.5	< 1.2		
Barium	142	253	340	232	287	233	193		
Beryllium	< 0.2	< 0.2	1.1	0.69	0.68	< 0.2	< 0.2		
Cadmium	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3		
Calcium	110000	122000	274000	151000	72800	95400	71900		
Chromium	1.3	13.7	4	< 0.7	< 0.7	< 0.8	5.8		
Cobalt	< 0.9	< 0.9	19.3	4.9	2.9	< 0.9	2.7		
Copper	10.8	2.7	5.9	< 1.4	3.5	4.4	4.4		
Iron	1240	452	1530	527	125	1200	1340		
Lead	< 1.6	< 1.6	< 1	< 1	<1	< 1.6	< 1		
Lithium	< 9.4	< 9.4	12.7	14	20.8	< 9.4	20.3		
Magnesium	20200	46900	38700	30400	45500	41400	35100		
Manganese	108	34.4	197	30.9	26.1	85.2	89.8		
Mercury	< 0.1	< 0.1	0.1	0.1	(0.35)	< 0.1	< 0.1		
Molybdenum	5.2	5.5	< 1.3	< 1.3	< 1.3	4	10.5		
Nickel	31.9	51.7	9.6	5.2	7.9	11.2	27.4		
Potassium	4820	5050	8460	5980	3360	2800	3970		
Selenium	< 2.2	< 2.2	< 1.2	< 1.2	< 1.2	< 2.2	< 1.2		
Silver	< 1.3	< 1.3	2.1	< 1.7	< 1.7	< 1.3	1.8		
Sodium	102000	62300	389000	54400	20200	25800	22100		
Thallium	< 3	< 3	10.7	7.6	8.3	< 3	7.3		
Vanadium	1.7	< 1.3	3.6	< 1.8	< 1.8	1.7	2.5		
Zinc	19.3	17.7	9.6	8.8	4.5	11.9	14.6		
Anions (mg/l)									
Chloride	123	189	NS	NS	NS	31.3	NS		
Fluoride	0.32	0.24	NS	NS	NS	0.22	NS		
Nitrate	0.34	1.3	0.86	1.5	0.97	6.2	0.5		
Sulfate	87.7	60.6	NS	NS	NS	34.9	NS		
Radiochemical	(pCi/l)			-					
U, total	1.17	5.41	0.29	3.72	1.02	0.39	2.55		
Ra-226	0.68	1.53	NS	NS	NS	0.70	NS		
Ra-228	< 0.47	< 0.47	NS	NS	NS	< 0.47	NS		
Th-228	(0.07)	0.14	NS	NS	NS	(0.06)	NS		
Th-230	(0.09)	0.23	NS	NS	NS	< 0.64	NS		
Th-232	(0.03)	(0.04)	NS	NS	NS	< 0.49	NS		
Volatile Organic	Compounds	(μg/l)							
TCE	< 1	< 1	NS	NS	NS	<1	NS		
DCE, Total	< 10	< 10	NS	NS	NS	< 10	NS		
PCE	2	<1	NS	NS	NS	(0.99)	NS		

The groundwater quality data was compared to background values for the weathered Burlington-Keokuk in the vicinity of the chemical plant site (Ref. 3). The majority of the analytes were similar to background for the weathered Burlington-Keokuk limestone. Concentrations of chromium, lithium, molybdenum, nitrate, sulfate, and thallium were greater than background, although they are similar to historical concentrations in the Frog Pond area (Ref. 3). Chloride concentrations are significantly

greater than background; however, runoff from the Missouri Department of Transportation facility, which stores salt for deicing of the roadways, has historically entered the groundwater in this area.

5. POTENTIAL SOURCE SURVEY


In response to increasing nitroaromatic compound concentrations in select wells in the Frog Pond area, a review of soil characterization data and previous soil removal actions was performed to evaluate whether a possible source may still be present in the area.

5.1 Soil Survey

It was suspected that initial increases in 1999 were the result of remediation in the Frog Pond area performed in 1998 that included the excavation of soil and foundations contaminated with nitroaromatic compounds. Trenching was performed in the area between the settling tank for the wash house (T-16) and the wastewater storage tank (T-32) to determine if the underground wooded piping was still present. No wooden piping or TNT stained soil was observed in the three trenches, which were excavated to the top of bedrock (Figure 5-1). During 1999, the Department of Army remediated Waste Lagoon 1 (Figure 5-1), which contained the waste products (primarily DNT) from the manufacturing of TNT. It was assumed that contaminant concentrations in groundwater would decrease after a period of time, however, contaminant levels remained elevated or showed slight increases.

Trenching was performed again in October 2001 to investigate possible soil sources associated with TNT Line #1 (Figure 5-1). These sources included process building locations, waste tank locations, and surface drainage features. Process building and waste tank locations were selected to determine if these features had been removed during previous remediation activities that were performed during the 1950's and if gross contamination was present in the adjacent soil. Surface drainages were target because overflows, spills, and wastewater were known to flow into the drainages during the operation of the TNT manufacturing facility. Trenching was performed because this original topography had been covered with soil during construction of the uranium processing facility.

Soil from the trenches was visually inspected for staining indicative of the presence of trinitrotoluene. Small pockets of nitroaromatic contamination were noted in the trench that transected the wash house (T-13). It was estimated that approximately 2 cu yd of soil exhibited nitroaromatic contamination. The trench was not extended beyond its design limits to further investigate the area. The concentration of trinitrotoluene in the soil sample collected from the bottom of the trench was 210 mg/kg. The remaining 5 nitroaromatic compounds were less than the detection limit (2.5 mg/kg). The other seven trenches did not contain any TNT-stained soils; however, a sampled collected at the base of FP03 produced a TNT concentration of 0.59 mg/kg. Analytical data indicated TNT levels below the detection limit (0.25 mg/kg) in the remainder of the locations. The conclusion from these trenching activities was that although small pockets of soil with visual TNT contamination are present in this area, a soil source of significant size is not present in the Frog Pond area (Appendix D).

In May 2002, TNT contaminated soil and a 12-in corrugated metal pipe (CMP) were encountered during excavation activities in the vicinity of MW-2013 (Fig. 5-1). A 2 to 3 in contaminated soil lens was located approximately 6 to 12 in above and at the end of the CMP, which was buried 2 ft below the ground surface. The CMP also contained water, which was not groundwater because the CMP was located in unsaturated overburden. Testing verified the presence of TNT in both the soil and water from the CMP. Approximately 12 cu yd of material showing visible TNT contamination was excavated from the area and 150 gal of water removed from the CMP. Analytical data are presented in Appendix D.

5.2 Groundwater Survey

Primary nitroaromatic compounds and associated breakdown products measured in the groundwater were evaluated in an effort to determine possible sources. Several of the primary nitroaromatic compounds breakdown differently through decomposition or photodegradation and can be indicators of source areas. A summary of breakdown products and possible source indicators is presented in Table 5-1.

Table 5-1

Primary Compound	Breakdown Products	Breakdown Mechanism	Source Indicator	
	1,3,5-TNB	Photodegradation	Surface spills	
2,4,6-TNT	2-Amino-4,6-DNT	Decomposition	Buried materials or pipeline	
	4-Amino-2,6-DNT	Decomposition	Buried materials or pipeline	
2.4-DNT	1,3-DNB	Photodegradation	Waste lagoon	
2,4-0111	Amino - NTs	Decomposition	Buried materials or pipeline	

The presence of 2,4,6-TNT, 2-Amino-4,6-DNT, 4-Amino-2,6-DNT, or 1,3,5-TNB would be an indication that groundwater impact was sourced by large surface spills near the production lines. The presence of 2,4-DNT or 1,3-DNB would be an indication that groundwater impact was sourced by leakage from one of the waste lagoons used during TNT manufacturing.

It is speculated that the nitroaromatic compound levels present in groundwater are likely long-term and were not previously observed due to dilution from water infiltrating from Frog Pond and other surface drainages. Groundwater levels in MW-2012 and other wells in close proximity to the Frog Pond have been declining since 1998. This decline would correlate to the diversion of storm water away from the Frog Pond area and the subsequent removal of the pond itself.

6. QUALITY ASSURANCE

Data evaluation was performed on the analytical data generated from this investigation to determine whether Weldon Spring Site Remedial Action Project (WSSRAP) data quality objectives were met and to ensure overall data quality results were generated. Data evaluation was performed in accordance with the *Environmental Quality Assurance Project Plan* (EQAPjP) (Ref. 4). The data evaluation process was completed through data verification, data review, data validation, and data management activities.

6.1 Data Evaluation

Data verification was conducted in accordance with the sampling plan (Ref. 3), to ensure that documentation and data were reported in compliance with established reporting requirements and standard operating procedures, and to ensure that all analyses were performed. Analytical results received from the laboratory were reviewed to verify samples were properly handled according to WSSRAP protocol. The following factors were reviewed and evaluated: sample identification, chain-of-custody, holding times, sample preservation requirements, sample analysis request forms, laboratory tracking, data reporting requirements, and the database transfer.

Data packages were reviewed to ensure the final data were properly identified, analyzed, reported, and met data quality requirements. The data were also reviewed to check for inconsistencies with the field quality control samples. Final analytical results were compared to the preliminary analytical results to identify any changes in data.

6.2 Quality Control Analyses

The Frog Pond Groundwater Investigation Sampling Plant (Ref. 1) indicated that quality control samples would be taken at a frequency of 1 per 20 samples or 5%. Quality control samples included matrix duplicates (DU) and matrix spike/matrix spike duplicates (MS/MD). Matrix duplicates were analyzed for uranium, metals, and anion samples. Matrix spike/matrix spike duplicates were also analyzed for uranium, metals, anion, nitroaromatic compound, and volatile organic compound (VOA) samples. Although the quality analyses were not run on separate samples, the quality control sample frequency requirement was satisfied. A summary of the number of quality control samples analyzed is presented in Table 6-1.

TABLE 6-1 Number of Quality Control Samples

		NUMBER OF		
TYPE	PARAMETERS	QUALITY CONTROL	TOTAL	% OF TOTAL
Duplicate	Radiological, Metals, Anions	29	215	13.5%
Matrix Spike/Matrix Spike Duplicate	Radiological, Metals, Anions, Nitroaromatic Compounds, and VOAs	109	1902	5.7%

Matrix duplicate samples (DU) are aliquots taken from the parent sample at the laboratory and results are compared to the parent sample and the relative percent difference (RPD) is calculated for each. The recommended RPD for radiological and chemical parameters is less than or equal to 50% and 35%, respectively. RPDs are not calculated for "non-detect" results. Also, if one or both of the results are less than five times the detection limit, the RPD value is considered of limited value due to higher tolerance limits near the analytical detection limit. Overall, the data quality does not appear to be compromised by these variances.

Twenty-nine (29) matrix duplicates were analyzed for this study. The RPD values ranged from 0 % to 55 %. None of the samples exceeded the recommend RPD value of 50% for radiological parameters. Two samples exceeded the recommended RPD value of 35% for chemical analyses and these samples had results for either the parent sample or duplicate that was less than five times the detection limit; therefore, the RPD value is considered of limited value due to higher tolerance limits near analytical detection limits. A summary of the quality control analyses is provided in Appendix C.

Matrix spikes (MS) are sample aliquots split by the laboratory that are treated in the same manner as the parent samples except these samples have been spiked with a known amount of the target analytes to determine the precision of the method in a given sample type or matrix. The samples are processed as regular samples and a percent recovery is determined after analysis. Matrix spike duplicates (MD) are split samples of the matrix spike samples that are treated in the same manner as the matrix spike parent samples. A percent recovery is determined after the analysis as well as the RPD between the MS and MD. The recommended percent recovery is +/- 20% for radiological and nitroaromatic compound parameters.

One hundred and nine (109) matrix spike/matrix spike duplicates were analyzed for this study. The percent recovery values typically were within the acceptable range for metals, anions, and uranium analyses. The percent recovery values for nitroaromatic compound analyses were consistently low. Of the 69 MS analyses performed 9 (13%) reported recovery values less than 80%. All of the samples exhibiting these low recoveries were nitroaromatic compounds, which typically exhibit low recoveries. Also, several locations selected for MS analyses were from locations with significant nitroaromatic compound contamination and the small amount added as a spike was likely masked by the greater existing contamination. One MS analysis for nitrate reported a recovery greater than 120%. The RPDs for the MDs were within the acceptable ranges for all the remaining parameters except for a set nitroaromatic compound results from MW-2006. Overall, the data quality does not appear to be compromised by these variances. A summary of the quality control analyses is provided in Appendix C.

7. SUMMARY AND CONCLUSIONS

7.1 Summary

Core drilling, well installation, hydraulic conductivity testing, and groundwater sampling were conducted in the Frog Pond area where nitroaromatic compounds have impacted the groundwater. The wells were installed in two stages, both on the chemical plant site and on the adjacent Missouri Department of Conservation property. Each stage was required to provide additional monitoring in areas both on and off site that lacked groundwater quality data.

Groundwater sampling was performed as the monitoring wells were completed and developed. Analytical data showed elevated nitroaromatic compound concentrations in the vicinity of MW-2012. Analytical results from wells installed during this program were also used to evaluate potential source areas for the nitroaromatic compound contamination in groundwater.

The distribution of nitroaromatic compounds in groundwater in the impacted area was further defined as a result of this study. The nitroaromatic compound plume is centered on MW-2012 located south of Frog Pond, and the higher concentrations are primarily resident in the bedrock lows within this area. The horizontal extent of nitroaromatic compound impact in the weathered Burlington-Keokuk has been better defined through the installation of these wells.

7.2 Conclusions

The objectives for the Frog Pond groundwater investigation program were accomplished. The program provided significant additional geologic, hydrologic, and water quality data in the vicinity of the site impacted by nitroaromatic compounds in groundwater. The areal extent of nitroaromatic compound impact on the groundwater in the northeastern portion of the chemical plant was better defined through the installation and sampling of the additional monitoring wells. Furthermore, the hydrogeologic and analytical data has provided an increased understanding of how the natural setting beneath the site controls the contaminant migration and fate.

The distribution of nitroaromatic compounds suggests two source areas for the plume in the Frog Pond area. The primary source area is production line #1, most notably the T-13 (wash house) and T-16 (wastewater settling tank). Some contribution to the nitroaromatic contamination originates from Army Lagoon #1. The preferential flow pathway in the vicinity of Frog Pond has been identified from the bedrock topography and the contaminant distribution.

8. REFERENCES

- 1. MK-Ferguson and Jacobs Engineering Group. Frog Pond Groundwater Investigation Sampling Plan. Rev 0 and Addendum 1: Additional Nitroaromatic Compound Delineation. Rev. 0. DOE/OR/21548-873. Prepared for the U.S. Department of Energy, Oak Ridge Operation Office, Weldon Spring Remedial Action Project. St. Charles, MO. November 2000.
- 2. U.S. Department of Interior, Bureau of Reclamation. *Groundwater Manual*, A Water Resources Technical Publication. 1977.
- 3. Argonne National Laboratory. Remedial Investigation for the Groundwater Operable Units at the Chemical Plant Area and Ordnance Works Area, Weldon Spring, Missouri. Final. DOE/OR/21548-571. Prepared for the U.S. Department of Energy, Oak Ridge Operation Office, Weldon Spring Remedial Action Project. St. Charles, MO. July 1997.
- 4. MK-Ferguson and Jacobs Engineering Group. *Environmental Quality Assurance Project Plan.* Rev. 5. DOE/OR/21548-352. Prepared for the U.S. Department of Energy, Oak Ridge Operation Office, Weldon Spring Remedial Action Project. St. Charles, MO. November 2000.

APPENDIX A

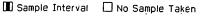
Geologic Logs
Packer Test Field Sheets
Monitoring Well Details
Well Development Records

APPENDIX B

Analytical Data

APPENDIX C

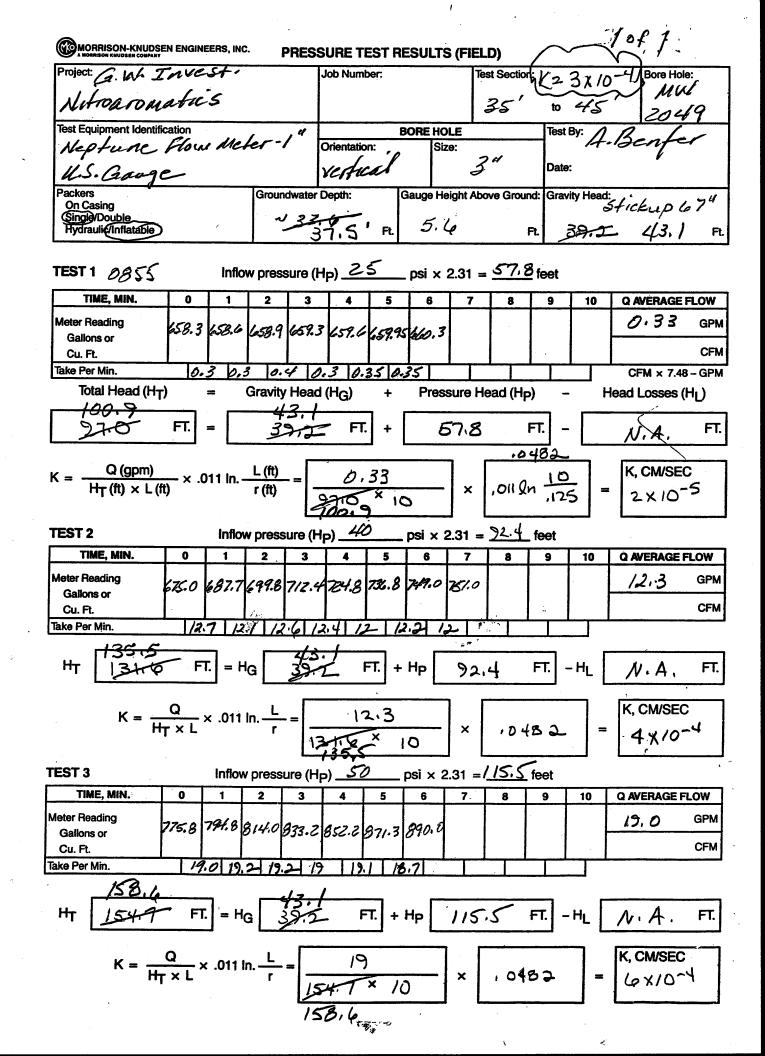
Quality Control Data


APPENDIX D

Nitroaromatic Soil/Source Investigations in the Frog Pond Area

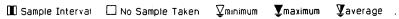

•		٨	IEL	D01	V S	PRI	NG SITE REMEDIAL AC	TION PROJE	CT	-		HOLE NUMBE		-20	14
			В	OR	ЕН	OLE	E AND WELL COMPLE	ETION LOG			J-90	SHEET 1 OF	5	· ·	
ELL S	7777	IC /C									MSM		104	3408	<u>8.7</u>
AC	TIVE			•			LOCATION NE OF DISPO	SAL CELL, NEAR FI	ROG P	OND		EAST (X):		6270	<u>3.8</u>
	NE V	NES.	TERN	Inc.			DRILL RIG MAKE CME-750 HSA				RY	TOC ELEVAT		637	7,0
10LE S					6" A]	IR-45	CME-750 HS/ ANGLE FROM HORIZONTAL & BEARING Vertical	BOTTOM OF H 45.0	OLE I	(TD)		GROUND ELE	VATION	63	4.
RILL	FLUI er co	DS	DA 2	VITIC	ES		CASING TYPE, DEPTH, SIZE 2" 316 SS Mon. Well	BEDROCK 20.5				STICKUP	· · · · · · · · · · · · · · · · · · ·	,	2
ATE S							DATE FINISH	WATER LEVEL	S & 0	ATES		HYDR CONDU	CTIVITY 7.8x10 ⁻²		'se
		_	- <u>4-0</u>	T	9	T	11-10-00 Mon. Well			-1		κ-	7.0010	(FOCKE	1
DEPTH feet	SAMPLE	Der J	PERCENT Recovery	or RGD	IC CO	ROCK	ALAN BENF	EK		LIND		WELL DIAGF	RAM	77	
DE fe	SAN	Number Number	PER(0 # N	GRAPHIC LOG	SOIL/ROCK class	DESCRIPTION AND I	REMARKS		STRAT		•	#	+	101111111111111111111111111111111111111
•		PT-I	100	11	_	FILL	CLAY, silty, Fill,			=-	rotectiv				+
-						CL	CLAY, silty, low plasticity, dark or	ayish brown		₹ c	asing w	ith	7/	1/2	
-	SP	PT-2		13	1/	1	(10YR4/2), damp, firm, CL. Proba CLAY, silty, low to med, plasticity			- 2	ocking (ft Diam	eter	// 1		
4							MmOx, mottled light gray (10YR7/	2) and yellow				e Pad With tive Posts			
4	SP	T-3	٠.	-	//	1 -	brown (10YR6/6), damp, firm, CL.	·							6
5-					//	1 -	CLAY, silty, as above, medium planary and MnOx.	sticity, with Fe0x		_ }					
4	SP	T-4		11	//		CLAY cilty madium planticity	tlad light ares and	1	1					
						1	CLAY, silty, medium plasticity, mot yellow brown with FeOx and MnOx	damp, firm, CL.		C	entraliz	er 			
- 4	SP	T-5		10	1	1 1 CL	Tip contains ~5% fine sand.	. * .							
4					///	1	CL as above, ~10% fine white sand Ferrelyiew Clay.	d, firm. Basal							6
10-	SP	T-6		14	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CL	CLAY, silty, some limestone gravel	 mottled light	 }	K	all Oc.:				
-					19×	1 -	gray and yellow brown, with FeOx firm, CL. Clay Till.	and MnOx, damp,		2		tainless			
4	SP	T-7		60+	1/2		-			^s	teel				
4							CL with some gravel as above.	•							
#	SPI	T-8		15		СН	CLAY, high plasticity, ~30% coars	e sand and fine			" Diamet	er——	-		6
15-					1/	-	 gravel, yellow brown, moist, firm, C clast in sampler shoe. 	H. Chert gravel	100		orehole				
╬	SPT	г-9		43	K		CLAY, high plasticity, ~30% angula	er sand and fine							
4				ł			 gravel some up to 1", mottled brow 	n (7.5YR5/3),				ds Bentonite-			
. 🖠	SPT	-10	.	50+	69		yellow brown and gray, some MnO: - CH with chert gravel as above.	. CH. Glay HII.		6	iout (b	Grout-Well")			
_ +	-				69		CLAY, high plasticity with angular		-						6
0-	SPT	-11_	,	50+	2		1", mottled dark brown, yellow brow hard, CH. Clay Till. Weathered lim			C	entralize	er———			
╢	NX	-1 ≥ 50)/112"	7.6		CHRT LMS	shoe. Auger refusal at 20.5'. LIMESTONE AND CHERT, limestone	is moderately							ľ
-				ľ			 weathered, medium— grained, model locally fossiliferous, highly fracture 	erately hard,							
1]			oxidation on fracture surfaces, tra pyrite, mostly light gray (N8), som	ace oxidized	3						
┇				Ē		-	(5YR6/4); minor chert, very light (gray.	M	2					6
5-							 Fluid return for NX-1 ~50-100%. L strongly weathered, with localized 	wavy bands of		6"	' Diamet	er	→		
1		.				ŀ	 oxidation, highly fractured with greatures per foot, surfaces are o 	xidized and open,			orehole				
-				Ē		t	core is easily broken, grayish orar brown. Contains ~50% chert throu	ige to orange	X	7					
1					中	•	whitish to light gray to pale orange fossiliferous. Strongly Weathered	e, locally							
`, †∥				[f	Keokuk Limestone.								60
) 	NX-	-2 50,	₩	27		-	-		3	Se	al				
				<u>[</u>	-	t			MDKs	3/	8" Envir				
				. [r	Fluid return for NX-2 \sim 30-50%.					J. 1. P. J			
-				<u> </u>		F				Â	Annr	ox. Static Wa	ter		
_						r						3.6 feet			60
5-	NX-	3 3/43/		40 F			-			1			<u></u>	لت	-
	'	1.07	<u> </u>							1					_

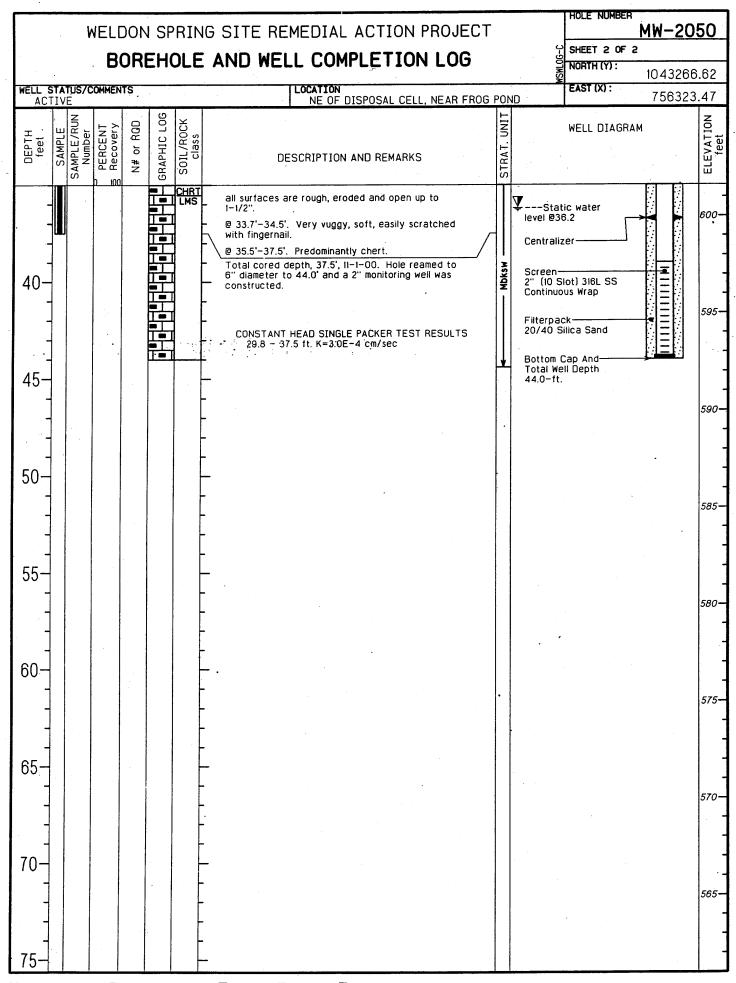
HOLE NUMBER WELDON SPRING SITE REMEDIAL ACTION PROJECT MW - 2049SHEET 2 OF 2 BOREHOLE AND WELL COMPLETION LOG NORTH (Y): 1043408.75 WELL STATUS/COMMENTS EAST (X): 756270.80 ACTIVE NE OF DISPOSAL CELL, NEAR FROG POND SAMPLE SAMPLE/RUN Number ELEVATION feet GRAPHIC LOG SOIL/ROCK class Rad PERCENT Recovery WELL DIAGRAM ซ DESCRIPTION AND REMARKS 固 CHRT LMS 43/60 @ 36'- 38.6'. Predominantly chert, very pale orange, fossiliferous, minor styolites. Lost circulation at 39.5'; partial return at 44.3'. 595 @ 39.6'- 40.0'. Chert with light gray high plasticity Screen (10 Slot) 316L SS clay. 76 60/60 Continuous Wrap @ 40'- 41.8'. Limestone, strongly weathered, solutioned, grayish orange (10YR8/2), minor interbedded chert. Filterpack 20/40 Silica Sand @ 41.8'- 44.0'. Predominantly chert, grayish blue (SRB5/2); with moderately weathered limestone, grayish orange (IOYR7/4), overall rock quality is Bottom Cap And 590 improved. Weathered Burlington-keokuk Limestone Total Well Depth 45 @ 44.0'- 45.0'. Strongly weathered limestone, 44.2-ft. grayish orange with minor light gray chert. Total cored depth 45.0', 11-3-00. Hole reamed to 6" Hole To 6" diameter to 45.0' and a 2" monitoring well was 45.0-ft. constructed. 585 50 CONSTANT HEAD SINGLE PACKER TEST RESULTS 28.Q - 35.0 ft. K= 7.8E-4 cm/sec 35.O - 45.0 ft. K= 5.3E-4 cm/sec 580-55 575 60 65 565 70 560



MORRISON-KNUDS	EN ENGIN	EERS, INC	. 1	PRESS	SURE T	EST RE	SULT	S (FIEI	LD)		یکسر	heet lof c
Alitroaron					Job Num				est Section		1×10	Bore Hole:
									28	to	35	LOFT
Test Equipment Identif		metel	/"		Orientatio		ORE HO	DLE ze:		Test	By: A.	Benfer
U.S. Grang	<u> </u>				vert	cas		3-0	12.12	S' Date	0900	11/3/00
Packers On Casing Single Double Hydraulio Inflatable			3	dwater I		Ft.		ight Ab	ove Groui	1	rity Head	2011
TEST 1		Inflo	v pres	sure (H	_{IP)} <u>/5</u>		psi ×	2.31 =	34.6	feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
Meter Reading Gallons or	2000	210.7	Z21-1	230.5	239.7	248.5	257.4	2664	275.4	- 22, 7		9./ GPM
Cu. Ft.												CFN
Take Per Min.	Jan &	1 10	49.	4 9.	28.	8 8.	99.					CFM × 7.48 - GPN
Total Head (H _T		(3ravity	Head	(H _G)	+	Pres	sure H	ead (H _F) -	ŀ	lead Losses (HL)
69.7	FT.	=,	<i>35</i> .	1	FT.] + [3	4.6		FT.] -		N.A. FI
$C = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	$\frac{1}{t}$ × .0)11 ln. –	L (ft)	-=	9.7	./ × 7.		×	.oiln	7.0	-] _	K, CM/SEC 8 × 10 - 4
	•		•	Ľ			$\overline{}$]				O X / O
EST 2		Inflow	press	ure (H _l	p) <u>35</u>	- 	osi x 2	2.31 =	80.9	feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
Meter Reading Gallons or	296.0	308.9	21.9	3347	347.3	359.8	3723					12.7 GPM
Cu. Ft.												- CFM
ake Per Min.	12:	9 13.	<u> 6 12.</u>	8 12	.6 12.	5 12.	5					
HT 116.C) FI	.] = H ₍	3	35:	/. F	न.] + I	НР [80.	9	FT.	н∟ [N.A. FT.
$K = \frac{1}{H_1}$	Q r×L	.011 ار	7.0 1. L 1.5	= //	16,0	2.7 × 7	-	×	.04	'4	=	K, CM/SEC 7 X/0-4
EST 3	Avit u	Inflow	pressu	re (Hp	50	p	si × 2.	.31 = <i>i</i>	115.5	feet		
TIME, MIN.	. 0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
eter Reading Gallons or	170.0 4	187.23	324.3	212	5328	3453	71.3					16.8 GPM
Cu. Ft.				1				İ		İ	Γ	CFM
ke Per Min.	الم كَوْن	2 17.1	16.9	16.0	6 16.	1 14.8	3				J '	
H _T 150.0			<u> </u>	35,	/ F	т.] + н	lp i	115.	5 1	-T.] -	нլ [N.A. FI.
		•									_ L	K, CM/SEC 7 x /0 -4

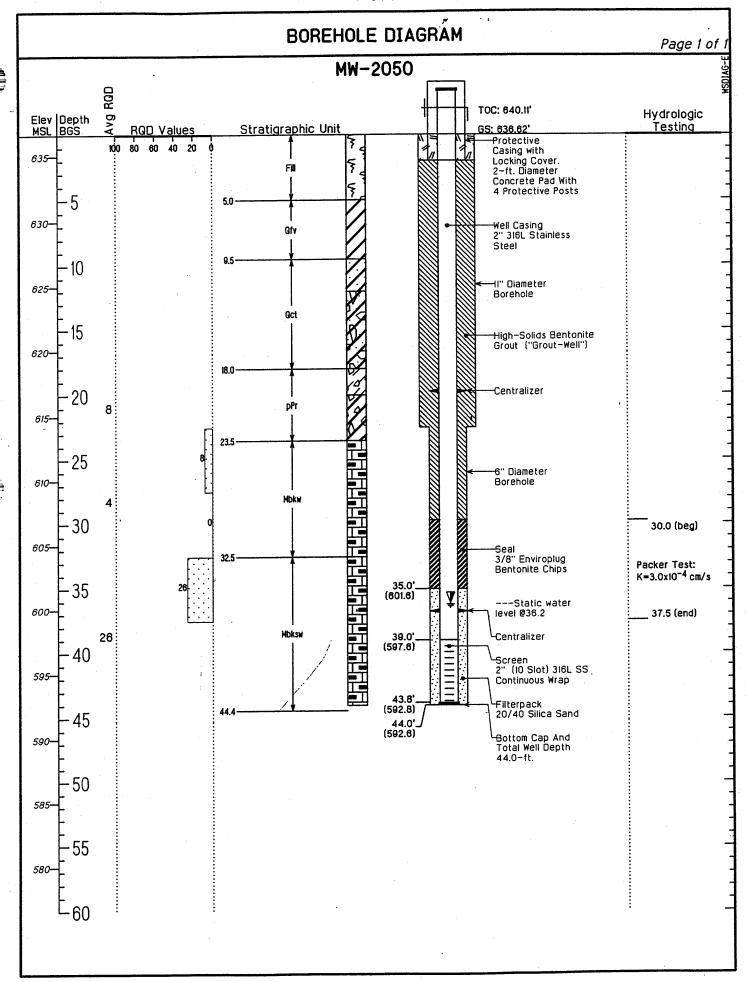
MORFIISON-KNUDSE A MORFIISON KNUDSEN COMPANY	N ENGIN	EERS, INC	c. _[PRESS	URE TI	EST RI	ESULTS	s (FIEL	D)		SK	heet Z of E
Project around			iest.	•	Job Numb	er:		Tes	st Section	1:		Bore Hole:
Nitroarom	afic	5							28	to	35/	2 1/0
Test Equipment Identific	cation	44-6		"			ORE HO	LE				Beafer
Neptune P		Mes			Orientatio		Siz			1		scafer
U.S. Gange	-				Vertu			3"		Date	la de	1/3/00
Packers On Casing	•		Groun	dwater [Depth:	. [0	auge He	ight Abo	ve Grour	d: Grav	ity Head	37.2
Single Double Hydraulic (nflatable)			33	6'3	7	Ft.		3.0				+ 38-
TEST 1 0940		Inflo	w pres	sure (H	lp) 2	7	psi × 2	2.31 =	462	⊈ feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
Meter Reading	700 A	ر مصراً	11076	6071	19/2	1255	44.5					9.3 GP
Gallons or Cu. Ft.		D70~	POLA	G 7.1	666.3	دىت	-				İ	CF
Take Per Min.	9.	4 9	49	3 9.	29	29	2.0	' 	<u> </u>	١		CFM × 7.48 - GP
Total Head (H _T))	·	Gravity			+		sure He	ad (Hp) -		lead Losses (H _L)
81. द	FT.	=	35	. 1-	FT.] +	40	4.2		FT		N.A. F
. Q (apm)			L (ft)	Г				1 [K, CM/SEC
$C = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	 × .(011 ln	r (ft)	-= -	91. 'S	χ, χ	7	×	, 0	44	=	7 × 10-4
TEST 2		Inflo	w press	ure (H _l	P)		psi × 2	2.31 = 1		feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
Meter Reading												GP
Gallons or Cu. Ft.												CF
ake Per Min.												
нт	F	T.] = H	lg		F	т.] +	н _Р			FT.	-н∟ [FI
:								Г				
K = H ₁	r × L	× .011	In. r	-		×		×			=	K, CM/SEC
EST 3		Inflow	v pressu	ure (Hp	o)		psi × 2	.31 = <u>.</u>		feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW
leter Reading	399.0	ĺ										GPN
Gallons or Cu. Ft.	1			ł			l					CFN
ke Per Min.												
1.												
H _T	FT	: = H	G		F	T. + 1	НР			FT	·HL	FT
H _T		J	<u> </u>		F	T. +	H _P	Г		FT	·HL [FT K, CM/SEC

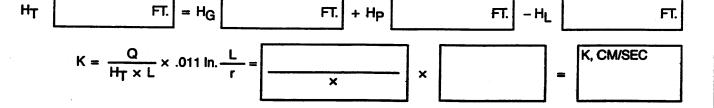



Well Development Record Project: En W. Invest. Nitro aromatics Date:///3 Client: W.O. No.: 3840 W.SSRA 2049 Well Number: Location: Near Frog Pond Screened Interval: 3910 - 4440 Hole Diameter: Hole Depth: Static Water Level: ~ 34./ Well Diameter: Water Volume
V = H(D)² x 0.041
V = One well volume (gallons) = 3.14
H = Height of water column (feet)
D = Inside well Diameter (inches) Well volume, V = ____ Bailer dimensions = ____(inches/feet) Bailer volume, V = ____ gallons Bailer or pump 🗸 Pump model Grandfos. BMI/MP-1 TEMP.°C TIME SPEC, COND. рΗ **TURBIDITY** COMMENTS 1315 0.95 8.1 1345 0.89 8.1 0830 11.8 -3. Turbidity 7.6 0835 7.5 0845 0.98 7.4 1.01 1055 7.4 1000+ HOO 0.29 1.00 7.4 1.02 7.6 1000+ 0.97 7.5 1315 1.01 11.8 (53% 7.3 ~13.7 well volore moved 1415 0.98 12.6 7.6

1/14/00

	٧				– .	IG SITE REMEDIAL ACT		Т	J-90	SHEET 1 OF 2	W-20	<u>)50</u>
ELL STA					<i></i>	LOCATION		C DONE	MSW.	NORTH (Y): EAST (X):	04326 75632	
ACTIV RILLING LAYNI OLE SIZ	G CONT E WES	TERN.	Inc.			DRILL RIG MAKE	/NIVWILL TUD THURS /	IR ROT	ARY	TOC ELEVATION GROUND ELEVATI	6	40.
9" HS	A-22.	5; NX-	37.5 ITIV			ANGLE FROM HORIZONTAL & BEARING 4 Vertical CASING TYPE, DEPTH, SIZE 2" 316 SS Mon. Well	BEDROCK 23.5			STICKUP	63	6.6 3.4
ATE STA	ART	-10-0		 		DATE FINISH 11-1-00, Mon. Well	WATER LEVELS	& DATE	s.	HYDR CONDUCTIV K= 3.0x		/sec er Te
DEPTH feet SAMPLE	SAMPLE/RUN Number	PERCENT Recovery	N# or RGD	GRAPHIC LOG	SOIL/ROCK class	ALAN BENFE DESCRIPTION AND R		STRAT UNIT	•	WELL DIAGRAM		EL EVATION
5-	SPT-1 SPT-2 SPT-3 SPT-4 SPT-5 SPT-6		8 6 7 9 II 18 20	I W W W W	CH CH	CLAY, medium to high plasticity, some roots, reddish yellow, moist, Clay as above, some olive gray. I CLAY, high plasticity, some FeOx, (2.5Y7/1), moist, soft, CH. Ferrely CH as above, zone of high FeOx of Trace fine sand at 7.0'. CLAY, high plasticity, ~10% fine why gray (2.5Y7/1), moist, firm, CH. Locally. CLAY, high plasticity, ~15% fine to white sand, slickensided, mottled in (10YR6/6) and light gray (10YR7/Clay Till.	soft, CL-CH. Fill. Fill. light gray view Clay. concentration. hite sand, light ower Ferrelview coarse angular brownish yellow (1), moist, firm, CH.	4	4 Protec	ith Cover. meter e Pad With tive Posts		6.
15-	SPT-8 SPT-9 SPT-10		9 62 23		GC	some fine gravel, some FeOx, motivellow, and light gray, moist, hard CH as above with MnOx, abundant limestone gravel. CH as above, some slickensides, weathered limestone gravel up to CH as above with gravel. GRAVEL, weathered limestone, an white with high plasticity clay, yell GC. Likely Residuum. CLAY, high plasticity with ~40% a	, CH. weathered InOx and FeOx, 1"+. Clay Till. gular, up to 1", llow brown, moist,	r Bet -		iids Bentonite Grout-Well'')		6.
- - 25- -	SPT-12 NX-1	∑ 30/60"	50+ 8		CHRT LMS	limestone and chert gravel, clay is (10YR6/6), moist, CH. Residuum. CH as above. CLAY, high plasticity, with chert a fragments, brownish yellow (10YRPossible Residuum. LIMESTONE AND CHERT, limestons ~40% chert. Lost circulation at 2 Poor core recovery from 22.5' to	and limestone 6/6), moist, CH. e is weathered, 13.5' permanently.	dd	6" Diame Borehole			6
30-	NX-3	60/60"	26			© 25'-27.5'. Predominantly chert, fracture surfaces are oxidized. A water-bearing. © 27.5'-32.5'. Limestone, modera argillaceous, some solutioning, oxibrown (5YR5/6) and whitish. ~40 light gray. ~16 fractures through are open with oxidized rough surf horizontal and likely represent be spaced ~ 2-3" apart. Vuggy © 3 LIMESTONE, strongly weathered, argillaceous, grayish orange (10YR8/scattered throughout the limestor fractures.	Appears to be tely weathered, dized, mottled light 10% chert, hard, out run NX-2, all aces, most are diding planes 2.3'. local solutioning, R7/4). ~30% 2), generally	MDKSW >MDKW	Seal— 3/8" En Bentonit			6





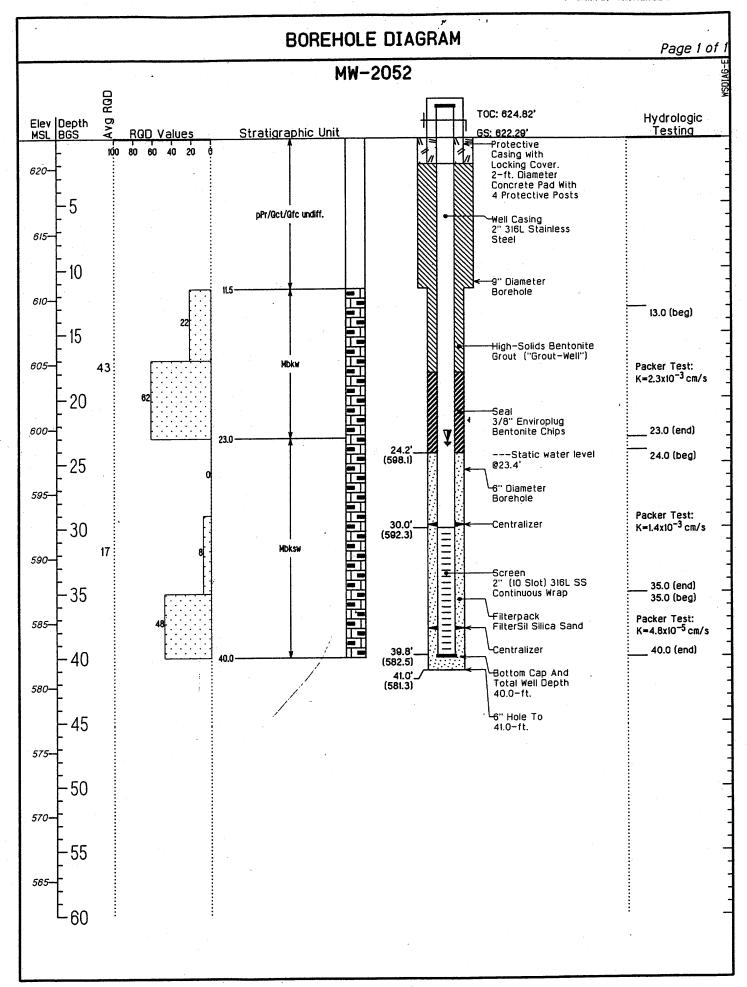
Project: Groundwater Invest. Job Number: Nitroaromatics. Prog. Panal Test Equipment Identification Neptune Flow Meter Orientation: N.S. pressure gauge Vertical 3.0" Packers On Casing Single Double Hydraulic (Inflatable) TEST 1 Inflow pressure (Hp) 20 psi × 2.31 = $\frac{1}{1000}$ Psi × 2.31 = $\frac{1}{10000}$ Psi × 2.31 = $\frac{1}{1000}$ Psi × 2.31 = $\frac{1}{1000}$ Psi × 2.31 = $\frac{1}{$	A. Ben, Cato 30 10 ead: 3 up 3
Test Equipment Identification 1	G. Ben; Cato Bead: 3 H 331
Test Equipment Identification Neptune Flow Mefer Neptune Flow Mefer Orientation: No. pressure gauge Groundwater Depth: One Casing Single Double Hydraulic Inflatable) Test By: Orientation: Size: Vertical 3.0" Date: 143 Packers One Casing Single Double Hydraulic Inflatable) Fit. Inflow pressure (Hp) 20 psi x 2.31 = 46-2 feet TIME, MIN. Inflow pressure (Hp) 20 Meter Reading Gallons or Cu. Ft. Take Per Min. Total Head (HT) Gravity Head (HG) Fr. Pressure Head (Hp) One Casing Size: Oauge Height Above Ground: Gravity Head Fr. Fr. Fr. Fr. Fr. Fr. Fr. Fr	230 100 Pad: 35 10
Packers On Casing (Single/Double Hydraulic/Inflatable) TEST 1 Inflow pressure (Hp) 20 psi x 2.31 = 46-2feet TIME, MIN. 0 1 2 3 4 5 6 7 8 9 10 Meter Reading Gallons or Cu. Ft. Take Per Min.	230 100 Pad: 35 10
Packers On Casing Gingle Double Hydraulic Inflatable Inflow pressure (Hp) 20 psi x 2.31 = 46-2 feet TIME, MIN. 0 1 2 3 4 5 6 7 8 9 10 Meter Reading Gallons or Cu. Ft. Take Per Min. Total Head (HT) = Gravity Head (HG) + Pressure Head (Hp) - S. G. Gravity Head Gravity He Strick Ft. 5.57 Gauge Height Above Ground: Gravity He Strick Ft. 5.57 Ft. 7.7 Ft. 7 Ft. 7 Ft. 7 Ft.	230 100 Pad: 35 10
On Casing Single/Double Hydraulio/Inflatable 38.9 Struck	ead: 3° 4° 3° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°
Single Double Hydraulio(Inflatable) Hydraulio(In	CFM
TEST 1 Inflow pressure (Hp) 20 psi x 2.31 = 46-2 feet TIME, MIN. 0 1 2 3 4 5 6 7 8 9 10 Meter Reading Gallons or Cu. Ft. Take Per Min. 7 7 7 66 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	O Q AVEF
TIME, MIN. 0 1 2 3 4 5 6 7 8 9 10 Meter Reading Gallons or Cu. Ft. Take Per Min.	CFM :
TIME, MIN. 0 1 2 3 4 5 6 7 8 9 10 Meter Reading Gallons or Cu. Ft. Take Per Min. 7 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CFM :
Meter Reading Gallons or Cu. Ft. Take Per Min. Total Head (H _T) = Gravity Head (H _G) + Pressure Head (H _P) - 85.3 FT. = 4.7 Q (gpm) (ff) 7.7 Q (gpm) (ff) 7.7 Meter Reading Gallons or Cu. Ft. 7.7 FT. 4.0.2 FT. 7.0.45	CFM :
Gallons or Cu. Ft. Take Per Min. Total Head (H _T) = Gravity Head (H _G) + Pressure Head (H _P) - 37.7 FT. = 4.7 FT. + 46.2 FT 0.045	CFM :
Cu. Ft. Take Per Min. 7.7 7.7 8.6 7.7 7.7 Total Head (H _T) = Gravity Head (H _G) + Pressure Head (H _P) - 85.3 FT. = 47 FT. + 46.2 FT 0.045	
Take Per Min. 1.7 1.7 6.6 1.7 1.7 Total Head (H _T) = Gravity Head (H _G) + Pressure Head (H _P) - $\frac{45.3}{5.3}$ FT. = $\frac{41.7}{5.5}$ FT. + $\frac{46.2}{5.5}$ FT $\frac{0.045}{5.5}$	
Total Head (H _T) = Gravity Head (H _G) + Pressure Head (H _P) - $\frac{85.3}{19}$ FT. = $\frac{9}{4}$ FT. + $\frac{1}{4}$ FT. + $\frac{1}{4}$ FT $\frac{1}{10}$ FT $\frac{1}{10}$	
$\frac{85.3}{87.9}$ FT. = $\frac{39.4}{40.2}$ FT $\frac{0.045}{1.045}$	THE ACT LOS
Q(qpm) 1(ft) 17	
Q(qpm) 1(ft) 17	N.A
. Q (gpm) 1 (ft) 1 7	1411-
$K = \frac{1}{H_T(ft) \times L(ft)} \times .011 \text{ In.} \frac{L(ft)}{r(ft)} = \frac{1}{1 \times 10^{-10}} \times .011 \frac{.7.7}{.011}$	K, CN
	1 .
3 7.7 .125	= 1/2
Inflow pressure (Hp.) 30 psi x 231 = (4) 3 feet	<u> </u>
Process Ann.	·
Meter Reading Gallons or 790.0 9954 201.1 206.9 012.7 018.7 024.4 030.5	5.2
Cu. Ft.	
Take Per Min. 5.65.55.85.86.05.95.9	
<u> </u>	
HT 140 FT. = HG 411 FT. + HP 69.3 FT HL	,
	L
$K = \frac{Q}{\sqrt{\sqrt{2}}} \times 011 \ln \frac{L}{\sqrt{\sqrt{2}}} = \frac{Q}{\sqrt{\sqrt{2}}} \times 011 \ln \frac{L}{\sqrt{\sqrt{2}}} = \frac{Q}{\sqrt{\sqrt{2}}} \times 011 \ln \frac{L}{\sqrt{\sqrt{2}}} = \frac{Q}{\sqrt{2}} \times 011 \ln \frac{L}{\sqrt{\sqrt{2}}} = \frac{Q}{\sqrt{2}} \times 011 \ln \frac{L}{\sqrt{2}} = \frac{Q}{\sqrt{2}} \times 011 \ln \frac{Q}{\sqrt{2}} = Q$	K, CM
$K = \frac{Q}{H_T \times L} \times .011 \text{ ln.} \frac{L}{r} = \left \frac{5.8}{1/1} \times 1.7 \right \times 1.045$	= 3x
Unstable P	
rest 3 / Noflow pressure (Hp) 35 psi × 2.31 = 80.8 feet	
TIME, MIN. (0) 2 3 4 5 6 7 8 9 10	
Motor Poorling	Q AVER
Gallons or 040.0 050.5 061.1 072.1 083.9 095.7 107.6 119.5 131.1 142.7 154.	1
Cu. Ft.	
Take Per Min. 19.5 10/6 Mao 11.8 11.8 11.9 11.9 11.6	
Take Per Min. 19.5 10/4 Mao 11.8 11.8 11.9 11.9 11.6 11.6	
Take Per Min. 19.5 10/4 Mao 11.8 11.8 11.9 11.9 11.6 11.6	
Take Per Min. 19.5 10/6 11.8 11.8 11.9 11.9 11.6 11.6 119.9 HT 122.5 FT. = HG 41.9 FT. + Hp 80.8 FT HL	11.4
Take Per Min. 19.5 10/4 Mao 11.8 11.8 11.9 11.9 11.6 11.6	

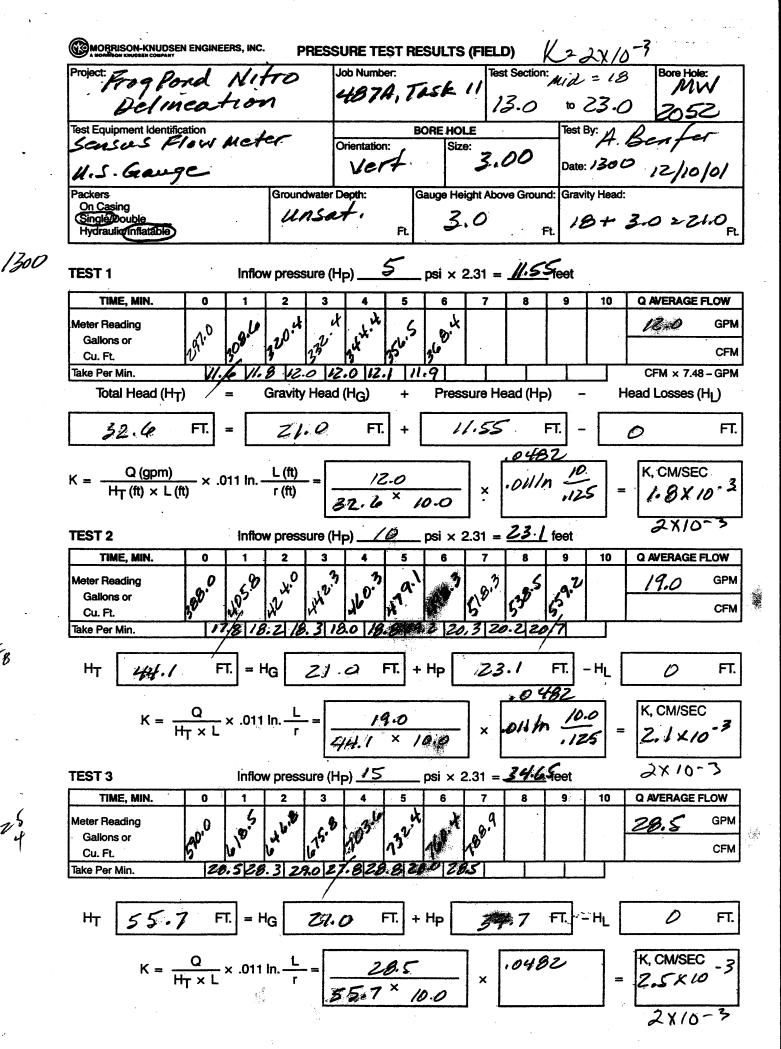
Well Development Record Project G.W. Invest. Nitroaromatics Date:///3 Client: WSSRAP W.O. No.: 2050 Well Number: Location: Near Frog Hole Diameter: 390-440 Screened Interval: Hole Depth: 35.6 Static Water Level: __~ Well Diameter: Water Column Height: Water Volume $V = H(D)^2 \times 0.041$ Well volume, V = _ gallons V = One well volume (gallons) H = Height of water column (feet) Bailer dimensions = ____(inches/feet) D = Inside well Diameter (inches) Bailer volume, V = _____ gallons Bailer or pump Pump model TIME COMMENTS furbidity SPEC. COND. TEMP. pН TURBIDITY erntic 1.18 1100 off-scale E.3 13.0 low light 11 1250 1.07 15.1 1305 off.scale 1405 8.0 13.0 140 0800 11.2 1,02 1.03 12.0 7.7 12.3 7.7 1025 13.1 7.7 E-3 - too clou 1030 1.03 7.4 12.8 1045 11.0 7.5 1340 1.09 11.9 1355 1.09 E. 3 -10 well vol. rentored

4/4/00

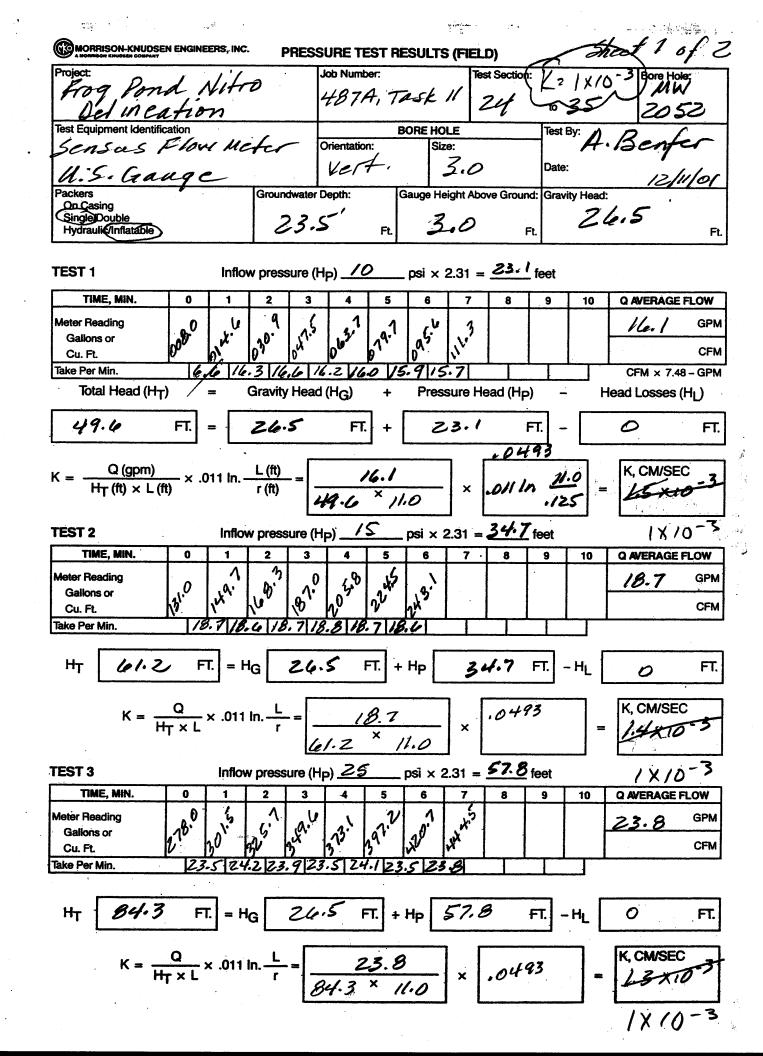
1

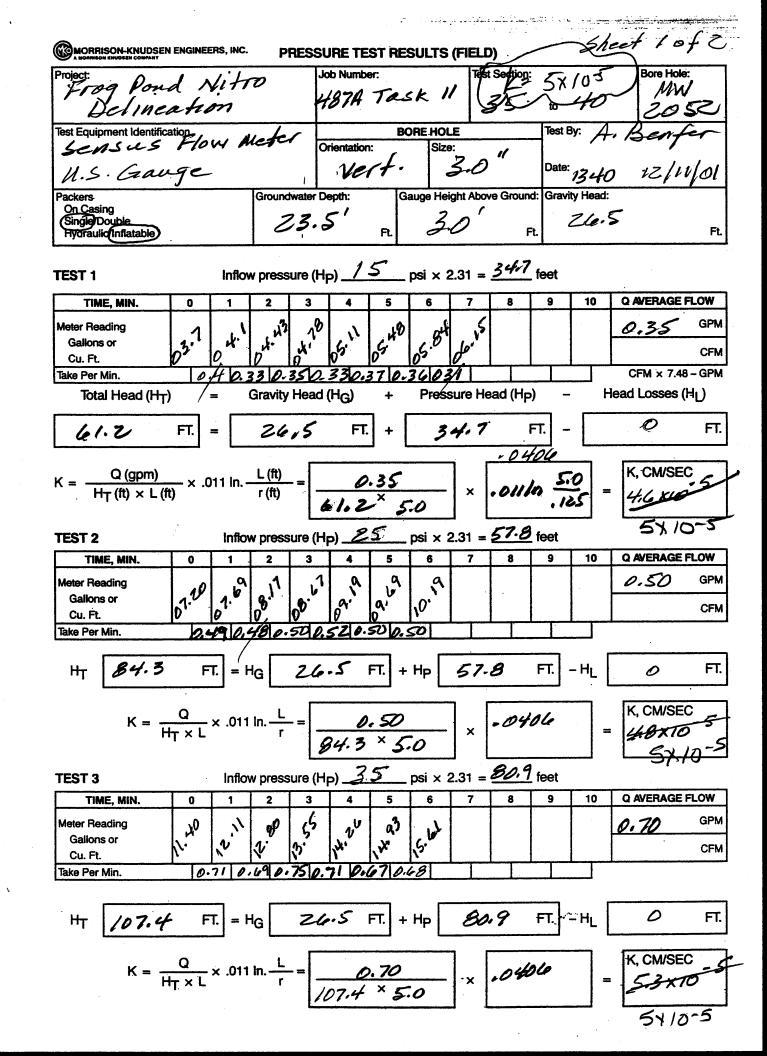
			WE	LD	NC:	SPRI	NG SITE REMEDIAL AC	CTION PROJEC	CT .	HOLE NUMBER	W-2052
İ				RO	RF	HOL	E AND WELL COMPL	ETION LOG	9	SHEET 1 OF 2	
L										NORTH (Y):	43928.24
ı	AC	ΠVΕ	S/COMM		· 			N. EDGE OF SITE			756051.16
	LAY	NE V	ESTER	RN Ir	ıc.		DRILL RIG MAKI CME-750 HS	A MICHIEL D. THE CO.		GROUND ELEVATION	624.82
- 1	9"	ISA-	S METH 11.5; NO DS & A	-40		IR-41	ANGLE FROM HORIZONTAL & BEARING Vertical CASING TYPE, DEPTH, SIZE	NG BEDROCK	LE (10)	STICKUP	622.29
1		er co	re; Air			• • •	2" 316 SS Mon. Well	E = 11 S	C DATES		2.53
Ľ			12-7-	01		T	12-14-01, Mon. Well	WATER LEVELS	· · · · · · · · · · · · · · · · · · ·	HYDR CONDUCTIVIT K= 2.3x10	
	I	ᄪ	Number	SL.	Rab	SOIL/ROCK	ALAN BENI	FER	INNI	WELL DIAGRAM	ELEVATION
	DEPTH feet	SAMPL	Number PERCENT	COV	10	PHIC IL/R	DESCRIPTION AND	REMARKS	 -	· <u> </u>	VAT
		S		- 1	* '	SO]	BESCHI HON AND	TREMARKS	STRA	T	
\vdash			- -	100				· · · · · · · · · · · · · · · · · · ·	Protect		
	_							the sunface to	Casing Locking	Cover.	
ı	_						Soil not sampled or logged from	the surface to	Concret	te Pad With	620-
	-						A CONTRACTOR AND CONT	· · · · · · · · · · · · · · · · · · ·	undiff.		
	5-						-				
ŀ	-						-		DFT/Gct/Gt 2" 316F Steel	sing Stainless	→ 💹 📗
1	-								Steel		615-
1]										
	10-				İ			•			
		Ц					Auger refusal at 11.5-ft. Continu	ued with NQ core.	9" Diam		
	. 4	SP N	T-1 3/6	2 6" 2	2	LMS	NQ-1, 11.5'- 17.0'. Loss zones un zones including the bottom of th	iknown, ~7 loss	Borehol	e .	610-
	-				=		fractures, several zones of bit of	drop.			
	,_					抖	© 12.5'. Lost circulation permane	•	· ·		
İ	15					큄 .	fine-grained, some vugs, mostly styolites, trace oxidized pyrite,	most fractures are	Liiah S	olida Bantanita	
]		-2		2	린	oxidized but probably not water interbedded chert, light gray.		Grout (olids Bentonite "Grout-Well")	
l	4		68/7		' 🛱		Burlington-Keokuk Limestone. © 17.0'- 19.4'. LIMESTONE AND		₩ ¥		605-
ı	-						limestone is light gray to orange hard, ~30% chert.	e brown, moderately			
12	20-						@19.4'- 23.0'. LIMESTONE, mode weathered, mostly orange brown				
	-						 argillaceous, vuggy, thinly bedde to soft; ~35% chert, generally the 	hinly interbedded		viroplug	
						1	with the limestone, mostly light g streaks of MnOx. One to 4 frac	tures per foot,	Bentoni	iviroplug te Chips tic water level	600-
1]	NO	-3 y 9/72'				rough, open, oxidized, some brok ~23-ft., Strongly Weathered But Limestone.		₹Sta @23.4	tic water level	
12	25-				Ħ.		NQ-3, 23.0'- 29.0'. Loss zones	unknown, certainly			
	4				Ē	5	the fast cutting zone from 25.8' 5 pieces of chert plus some rubl 2-1/2", light gray to yellow brow	ole, longest piece	6" Diame Borehol		
					<u></u>	늬	thin streaks of MnOx, fossiliferou				595-
	_					H	► Void at ~27' to ~28'.		A S		
	30-	NG	-4 <mark>⊠</mark> 34/7;	2		2	NQ-4, 29.0'- 35.0'. Loss zones the top.	unknown, possibly	Centrali	zer 💮 📜	_ -
`	۱ ۲۰						LIMESTONE AND CHERT, ~50/50 interbedded, "poker chip"-like f				三月 -
	4		1				bedding, limestone is strongly we brown, argillaceous, very vuggy	eathered, orange			= ₅₉₀ _
	-						eroded; light gray chert.		Screen-		≣∥ ਁ .
١,	、╴╢					늬	<u> </u>		2" (10 S	Slot) 316L SS	≣∥ .
3	35-	NG	-5 36/6 0	4	▫Ё		<u>†</u>			lu-lu-	
	Sample	Inte	rval	J No	Samp	ole Take	en ∑minimum ▼maximum ▼avera	age			





		V						DIAL ACTION PRO COMPLETION L		ر - ون - ا	SHEET 2 OF 2	MW-205
IELL S	STA1	rus/c	OMMEN	ITS .		····-		ATION N. OF CELL, N. EDGE OF S	ITE	<u> </u>	EAST (X):	1043928.2 756051
		SAMPLE/RUN Number	PERCENT B Recovery	N# or RGD	GRAPHIC LOG	SOIL/ROCK class	DESCR	IPTION AND REMARKS		ONI CONTRACT	WELL DIAGRAM	
- - 40-		4	36/60"			LMS CHRT	slightly weathered, oxidation. 4+ frac @ 35.5'- 38.0'. Lim argillacous, locally to 1/2", weak and s interbedded with ~ some fossils. One tight. Strongly Weatherstone. Total cored depth	arsely crystalline limestone, hard, light gray with minor ures per foot, broken. estone, strongly weathered, thinly bedded, localized vugs omewhat soft, yellow brown, 40% chert, light and dark gracture per foot, broken bulathered Burlington-Keokuk 40.0', 12-11-01. Hole reamed and a 2" monitoring well wa	ay,	Centrali	Silica Sand zer Cap And Ell Depth	
- - 45-		•	•	•		•	- constructed. - CONSTANT HEAD S 13.0 - 23.0- 24.0 - 35.0-	INGLE PACKER TEST RESUL ft. K = 2.3E-3 cm/sec -ft. K = 1.4E-3 cm/sec -ft. K = 4.8E-5 cm/sec		6" Hole 41.0-ft.		
50-						•	- - -			. 2		
55—							· · ·					5
-			,									5
i0-							<u>-</u> 					5
- 55- -				-			·					5
0-							• • • • • • • • • • • • • • • • • • •				•	
5-							_					5





Project: Frog Pond Deline	. Ni	tro			Job Numb 487A		sk li	/	st Section			Bore I	lok
									15.0) to	23	0 20	2
Test Equipment Identific	<i>Flow</i>	1 Me	fer	-	Orientation		SORE HOL			Test	By: A	Benj	Le
U.S. Gan	ge				Vers	<i>f</i> .	,	3.0	¥ .	- I		110/01	
Packers				dwater		(Sauge Hei	ght Abo	ve Grou	i			
On Casing Single Double Hydraulic/Inflatable			Us	15a	t		3	0	• ,	FL /	18+3	3	
nydraulic/initatable/		,	<u> </u>			Ft.				Ft.			
TEST 1		Inflo	w press	sure (H	1p) _5		psi × 2	2.31 =	11.5	≨ feet		-	
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAG	Œ
Meter Reading	3.0	1.1	الإي	0	1 3	1 4	1 4	×				20.2	ر
Gallons or Cu. Ft.	6)2	d)	4	670	690	alle	436	266					
Take Per Min.	20	220	.4 20	.4 2	0.3 20	.1 2	0.0 20	-2				CFM × 7	'.4 i
Total Head (HT) :	= !	Gravity	Head	(H _G)	+	Press	ure H	ead (H	P) -	- H	Head Losse	s (
32.6	FT.	_ [21.	0	Fī.] 🕌	11	1.6		FT	. 🗂	D	_
<i>.</i> -		<u> </u>				1					<u> </u>		
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$) × .0	11 ln	r (ft)	-= -	<i>El</i> 32.4	0. <u>と</u> ×		×	. 04	BZ	_	K, CM/S	
				فا	32.4	-	10.0		····			بالمحدد	<i>ا</i> ر
TEST 2		Inflov	v press	ا	l _P)			.31 =		_ feet		= 2.3	1
TEST 2 TIME, MIN.	0	Inflov 1	v press	ا				.31 =	8	_ feet	X 10	= 2.3 Q AVERAG	
TIME, MIN. Meter Reading	0			ure (H	lp)		psi × 2		·		X 10		
TIME, MIN. Meter Reading Gallons or Cu. Ft.	0			ure (H	lp)		psi × 2		·		X 10		
TIME, MIN. Meter Reading Gallons or	0			ure (H	lp)		psi × 2		·		X 10		
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.		1	2	ure (H	(P)	5	psi × 2		·	9			
Meter Reading Gallons or Cu. Ft.	O FI	1	2	ure (H	(P)	5	psi × 2		·	9	10 HL [
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.	FI	1 := H	g	ure (H	(P)	5	psi × 2		·	9		Q AVERAG	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.	FI	1 := H	g	ure (H	(P)	-т.] +	psi × 2		·	9		Q AVERAG	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. H	FI	1 := H	g	ure (H	(P)	5	psi × 2	7	·	9		Q AVERAG	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. K = H	FI	1 = H × .011	g	ure (H	P)	5 -T. +	psi × 2	7 × [8	FT.		Q AVERAG	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H	FI	1 = H × .011	In. L	ure (H	P)	5 -T. +	psi x 2	7 × [8	FT.		Q AVERAG	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. K = H TEST 3 TIME, MIN. Meter Reading	FI Q T×L	1	In. Lr	ure (H	P)	5 -T. +	psi × 2 Hp psi × 2	× [8	FT.	- HL [K, CM/S	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	FI Q T×L	1	In. Lr	ure (H	P)	5 -T. +	psi × 2 Hp psi × 2	× [8	FT.	- HL [K, CM/S	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. K = H TEST 3 TIME, MIN. Meter Reading Gallons or	FI Q T×L	1	In. Lr	ure (H	P)	5 -T. +	psi × 2 Hp psi × 2	× [8	FT.	- HL [K, CM/S	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	FI Q T×L	1 = H x .011 Inflow	In. L/r	ure (H	P)	5 -T. +	psi × 2 Hp psi × 2	× [8	FT.	- HL [K, CM/S	E
TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	FI Q T×L	1 = H × .011 Inflow	In. L/r	ure (H	P)F	5 -T. +	psi × 2 Hp psi × 2	× [8	FT.	- HL [K, CM/S	E

MORRISON-KNUDSEN	ENGINEE	RS, INC.	Đ	DEGGI	IDE TE	et pe	SULTS	ÆÆ F)\		51	heet Z of
Project: Frog Pond Delines	. N.	ifre		Jo	b Numb	er:	sku	Test	Section:		35	Bore Hole: MW 2052 Benfer
Test Equipment Identifica Sen & u. 5 F U.S. Garage	low	, Me	ter		rientation	n:	Size	3.0		Date:		12/11/01
Packers On Casing Single Double Hydraulid Inflatable				water De	•	Ft.	auge Hei	ght Abov		ı		S Ft.
TEST 1		Inflov	v press	ure (H	p)	10_	psi × 2	2.31 =	23.1	feet		
	4 ¹ ,0	1 8 10 10 10 10 10 10 10 10 10 10 10 10 10	2 30°	3 1 5)3'	52.3	5	5 12	7 N.5 Su		g & B	10	Q AVERAGE FLOW 1/3-C GPM CFM CFM × 7.48 – GPM
Total Head (H _T)	<u> </u>		5 13. Gravity		(H _G)	+		ure He	ad (H _F) -		lead Losses (H _L)
49.6	FT.	= [24	5	FI	+ [Z	3.1	:	FT		/ <i>0</i> / FT.
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	-× .0	11 ln	L (ft)	-= -	4.6	13. G	V-0] × [.09	f93] =	1×10-3
TEST 2		Inflo	w press	ure (H	P)		psi x 2			feet		=1.4×10
Meter Reading Gallons or	0 :	1	2	3	4	5	6	7	8	9	10	Q AVERAGE FLOW GPM CFM
Cu. Ft. Take Per Min.												1
нт	F	Г.] = H	lg _			FT. +	НР			FT.	- H _L	Fī.
K = -	Q T × L	× .011	In. L	-=	,,,,	×] × [=	K, CM/SEC
TEST 3		Inflo	w press	ure (H	P)		psi x 2	2.31 =		feet		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	2 AVERAGE FLOW
Meter Reading Gallons or Cu. Ft.												GPM CFM
Take Per Min.												
нт	F	г.] = H	lg _			FT. +	HP		ĺ	FT.	HL	FT.
K = 	Q T × L	× .011	In. L	-=[_] _× [K, CM/SEC

		nern neren erreb. Herenige	1	in will the	تفقيق داد	ril. Fr	सम्बद्धाः			ige seggisterede migras com	e since e	•
MORRISON-KNUDSEN	I ENGINEERS,	inc. P	RESSL	JRE TES	T RES	ULTS (FIELD)		Shec	1 2 0 1 Bore Hole:	12
Frog Pond	1 1/1	10	Jo	b Number			Test	Section:	:		Bore Hole:	
Ploy Form			4	187A	TAS	LU	1 2	35	to	40	MW 2050	
Delinea								<i>/</i> >	1=			
Test Equipment Identific	ation <i>Flow</i>	Mete	/ b	rientation:	BOF	Size:			lest E	».A. A	Benfer	_
Mas. Ga				Vert			3.0	И	Date:	12	111/01	
Packers		Ground	water De	epth:	Gau	ge Heig	ht Abov	e Groun	d: Gravi			
On Casing Single Double Hydraulio inflatable		2	3.5	١	Ft.	3	.0	F	₹.	26	. ح	Ft.
TEST 1	lı	nflow press	ure (H _j) <i>15</i>	p	si × 2	.31 =	34.7	feet			
TIME, MIN.	0	1 2	3	4	5	6	7	8	9	10	Q AVERAGE F	LOW
Meter Reading	30	3 9	.0	u	a ^a	3					0.34	GPM
Gallons or	1/6,7	u a	130	10	4.	97'						CFM
Cu. Ft. Take Per Min.	0.33	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	710	340.3	50.3	β ∦			L	<u> </u>	CFM × 7.48	
Total Head (H _T)		Gravity			+	Press	ure He	ad (H _F	·) -	}	lead Losses (I	
61.2	FT. =	Z	4.5	Fī.	+	34	1.7	•	FT		0	FT.
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	× .011	in. L (ft)	-=	0.	34 × 5.	0	' '× [.04	206	. =	K, CM/SEC	0-5
TEST 2	. 1	nflow press	ure (H	P)	p	si × 2	.31 =	41	feet		X = 48	
TIME, MIN.	0	1 2	3	4	5	6	7	8	9	10	Q AVERAGE	FLOW
Meter Reading						.						GPM
Gallons or Cu. Ft.					.							CFM
Take Per Min.			T			7		Ч-	Υ	<u>' </u>	<u> </u>	
		· · · · · · · · · · · · · · · · · · ·										
НТ	FT.	= HG		F	T. + H	¹p ☐			FT.	- HL		FT.
	0	1	Г				1 [K, CM/SE	C
K = -	 ×.	.011 ln. L	-=	,		<u> </u>	×			_ _	1	
•		•			×							
TEST 3	1	nflow press	ure (H	p)	P	si × 2	.31 =		_ feet			
TIME, MIN.	0	1 2	3	4	5	6	7	8	9	10	Q AVERAGE	FLOW
Meter Reading					ı	İ						GPM
Gallons or					İ	·						CFM
Cu. Ft. Take Per Min.	1 1			┖╌┯╌┸		-	T	L	<u> </u>	<u> </u>	<u> </u>	
-and i of thin.		-				<u> </u>						
HT	FT.	= H _G		F	T. + H	₽			FT.	≃HL		FT.
<u> </u>							, ,			· · · · ·	1.2	
K =	Q hxLx.	011 ln L	_				1			1	K, CM/SE	C
" Н	H x L	r	- -		×		×			=	• [

WELDON SPRING SITE REMEDIAL ACTION PROJECT

MONITORING WELL DEVELOPMENT FORM

ES&H 4.4.8.2, Rev.0, 5/95

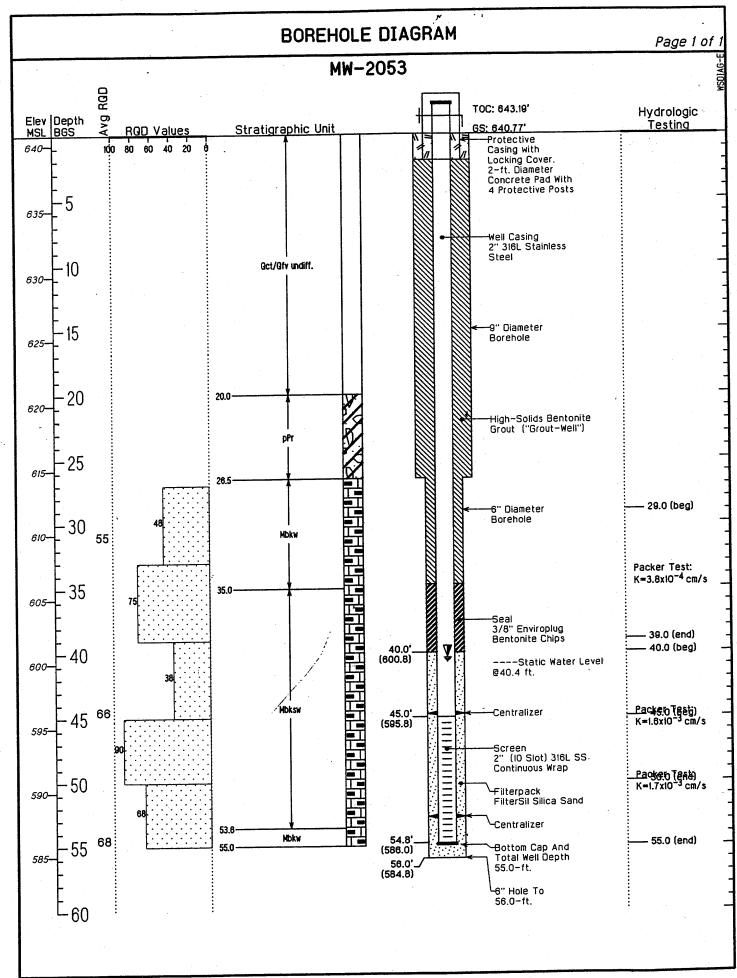
	JECT NAME <i>H<u>roq Fond Nitto Delineation</u></i> work package no <u>487</u> 4	SHEET <u>1</u> OF <u>2</u>
DEVI	ELOPED BY Layne-Western, Han Benfer PMC	
1.	ELOPED BY Lagre-Western, Han Benfer PMC No. of Ce Well Number.: MW-2052 Well Location: edge.	of site
2.	Date of Installation: 12-14-01	
3.	Date of Development: 2-17-01	·
4.	Static Water Level: Before Developmentft.; At least 24 hrs. after	ft.
5.	Organic Vapor: Before development NA ppm; After development NA	ppm.
6.	Quantity of water loss during drilling, if used: gal.	·
7	Quantity of standing water in well and annulus before development:	gal.
8.	Depth from top of well casing to bottom of well: 42.5 ft. (from Well Installation	Diagram)
9.	Well diameter: 2.0 in.	
10.	Screen length: 10.0 ft.	
11.	Minimum quantity of water to be removed: 23 gal.	
12.	Depth to top of sediment: Before development NA ft.; After development NA	ft.
13.	Physical character of water (before/after development): Cloudy / Clear	
14.	Type and size of well development equipment: 1/2 "Carred fos Redi - F	10 Lubmer
15.	Type and size of well development equipment: 1/2 "Carund fos Redi-F Description of surge technique: bailed well several fines i	initially
16.	Height of well casing above ground surface: 2½ ft. (from Well Installation	
	Quantity of water removed: 80 gal. Time for removal: 1/45 hr.	/min.

WELDON SPRING SITE REMEDIAL ACTION PROJECT

MONITORING WELL DEVELOPMENT FORM

ES&H 4.4.8.2, Rev.0, 5/95

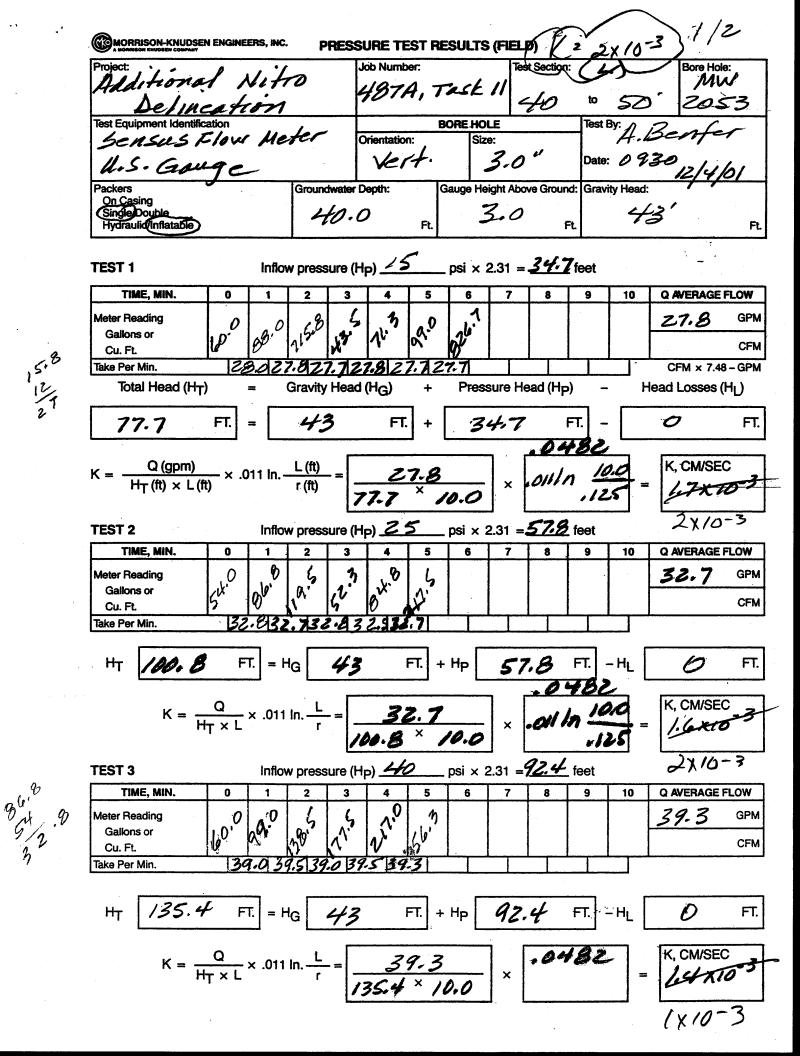
PROJECT NAME Frog Pond Nitro Delmeatronwork PACKAGE NO. 487A, Task U
SHEET 2 OF 2

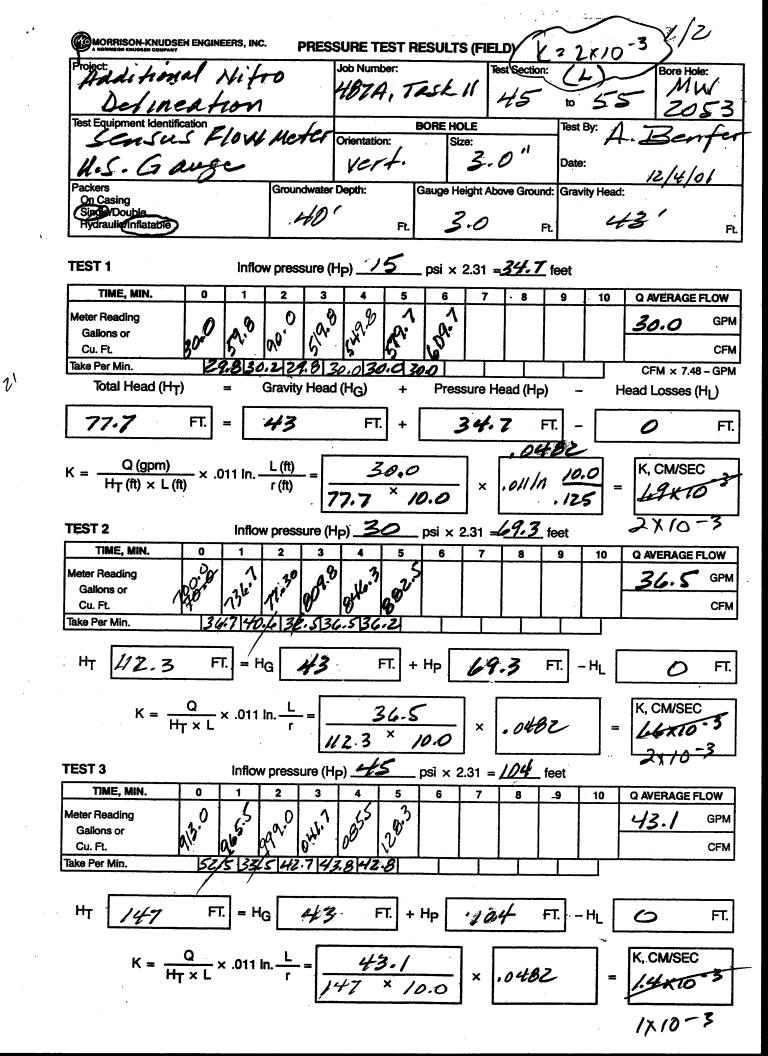

DEVELOPED BY Lagre Western, Han Benfer PMC

Well Number: MW-2052 Well Locations: North of Cell

2/17/	OA	,			r	
Date/ Time	Hrs. Dev./ Cum. Hrs. Dev.	Gals. Purged/ Cum. Gals. Purged	pН	Temp.	Cond.	Remarks Turbidity 210
0843		20	7.0	12.1	2.59	210
0845		245	4.6	12.6	2.79	171
3847		30	2.50	12.9	2.78	220
1852		35	62	13.1	2.74	268
0854		40	6.5	13.3	3.83	306
9857		45	6.5		2.89	l e e e e e e e e e e e e e e e e e e e
0930		50	6.0	10.7	2.93	661
0937	y	55	6.1	10.3	3.01	160
0943		160	las 1	12.4	2.95	112
0950	-	65	6.1	12.9	2.77	87.1
0958		70	2.1	12.6	2,83	43.8
1005		75	6.1		2.89	
1013	*	80	6.1	12.8	3.00	9.41
					ă.	
				#	\ .	
					- Agreement	

UE SI 9" HS	VE G CONT E WES ZE & M SA-27; LUIDS CORE; ART	RACTO TERN IETHOD NQ-5 & ADO Air re	R Inc. 5; 6" ITIV	ES	1	DRILL RIG MAKE CME-750 HSA ANGLE FROM HORIZONTAL & BEARING Vertical CASING TYPE, DEPTH, SIZE 2" 316 SS Mon. Well DATE FINISH 12-7-01, Mon. Well	/NXWL; I-R TH-60 A BOTTOM OF HOL 55.0 BEDROCK 26.5 WATER LEVELS	E (TD)	TO GR	ST (X): C ELEVATION OUND ELEVATION ICKUP DR CONDUCTIVI K = 3.8x10	640. 2.
feet	SAMPLE/RUN Number	PERCENT B Recovery	1	GRAPHIC LOG	SOIL/ROCK class	ALAN BENFI	•	STRAT. UNIT	WE	LL DIAGRAM	
5						The soil overburden was not same the surface to 20.0-ft.	oled or logged from	0ct/0fv undiff.	sing with cking Cov cking Cov ft. Diamet ncrete Pa Protective Il Casing- 316L Stai eel Diameter- rehole	er Id With Posts	
0-	SPT-1		18		СН	CLAY, high plasticity, minor angula some decomposed limestone, mott and black, moist, hard. CH. Resid	led reddish brown		gh-Solids out ("Gro	Bentonite ut-Well")	
5- -	SPT-3		61+		CHO.	CH as above. Residuum. Auger refusal at 26.5-ft., continu	e with NG core.		ż		
0-	NG-1	63/72"	48 75		CHRI LMS	Lost circulation at 27.5-ft. permic CHERT, hard, some nodular, some localized wavy bedding, thin streegray to light brown. LIMESTONE, weathered, argillaceous, minor scipyrite, gray to yellow brown. Zerper foot, all rough, open and oxid Weathered Burlington-Keokuk Lime 29.3'-29.6'. Chert breccia, ligh brown, FeOx stain, generally interlimestone, vuggy at 29.0', 30.3' to 0.8' of NQ-1 core picked up in NQ-1 core	disseminated, aks of MnOx, light ~40% moderately attered oxidized to 44 fractures ized; some rubble. estone. at gray to orange bedded with 30.5' and 31.8'.		Diameter rehole		


* METTING COUNTY STEEDENMENTAL ALTUNIONIUM ()	MIN OO	152
WELDON SPRING SITE REMEDIAL ACTION PROJECT	MW-20	<u> </u>
BOREHOLE AND WELL COMPLETION LOG	1.	
<u> </u>	104342	-
ACTIVE NE CORNER OF DISPOSAL CELL	75591	9.13
DEPTH feet SAMPLE/RUN Number Number PERCENT Recovery N# or RQD SOIL/ROCK class class SIRAT. UNIT	AGRAM	NO
SAMPLE ROLL RECOVETY Number RECOVETY Number RECOVETY N# or ROD SALAPHIC LOG SOIL/ROCK class Class ITAT. UNIT		ELEVATION feet
SAMPLE SA		LEV
0 h 100 8	<u> </u>	ш
CHRT © 33.0'- 34.9'. Mostly limestone, moderately weathered, hard, argillaceous, somewhat vuggy,		605-
mostly yellow brown, with ~30% interbedded chert,		-
- @ 34.9'- 38.5'. Mostly light colored chert with ~30% 3/8" Enviroplug		-
strongly weathered limestone orange brown Bentonite Chips		-
NG-3 38 argillaceous, vuggy, soft and weak. Zero to 3 fractures per foot, rough and open. Strongly Weathered Burlington-Keokuk Limestone.	Level :	-
- @ 38.5'- 39.8'. Very vuggy, very soft, highly @40.4 ft.		600-
eroded. @ ~40.4'- 41.5'. Bit dropped; probable void.		-
.60:42.1'- 45.0'. Mostly chert, light brown to light		-
gray with thin MnOx streaks, ~20% limestone, moderately weathered, argillaceous, thinly bedded.		"-
40 Ng-4 90 90 945.0°. Overall rock quality improved, especially		525
I IIII I IIII I Strongly weathered, arginaceous, sort, locally thinly III		595—
bedded, fossiliferous and vuggy. Color varies from light gray to orange brown. Strongly Weathered Screen—————		
Burlington-Keokuk Limestone. 2" (10 Slot) 316L S Continuous Wran	11.1	
and orange brown.	MEM	
50 Ng-5 S2/60" 68 9 49.7' - 50.0'. Vugs up to 2''. Filterpack—FilterSil Silica Sand		590-
52/60"		390-
closely interbedded, limestone strongly weathered to 53.6'.		
TANGETONE madesately usebbased preliferance		
generally soft and weak, mostly fine-grained,		
with tiny black specks of MnOx. Zero to 2+ fractures per foot, some open and eroded, some Total Well Depth		585-
rubble. Weathered Burlington-Keokuk Limestone. Total cored depth 55.0', 12-4-01. Hole reamed to		
6" diameter to 56.0' and a 2" monitoring well was 6" Hole To-	ــــ	-
		-
60-1		-
OO		580-
29.0 - 39.0-ft. K = 3.8E-4 cm/sec 40.0 - 50.0-ft. K = 1.6E-3 cm/sec		-
45.0 - 55.0-ft. K = 1.7E-3 cm/sec		-
		-
65-		-
		575-
		-
		1
		-
70-		
		570-
	•	-
75-		



		INC. P		IESI NE	SULTS	(FIEL	ט (ט		•	ofE
Addition Delinea	eal No	tro	Job Nu 4Bi	mber: A, Ta	ask l	. /		n: Mid	70	Bore H
Delinea	fron					1	4.0		59.0	20
Test Equipment Identific Sauces	Elo W	Mete	4	ition:	Size	9 :	~ <i>a</i>	Test	By:	13 lov
U.S. Gan	90		No	est		3.0	0 "	Date	: IZ	13/01
Packers On Casing Single Double Hydraulic Inflatable		1/2	water Depth: US A1 UB	Ft.	Sauge Hei	ight Abo			ity Head	= 37
TEST 1	lr	nflow press	ure (Hp) _	10	psi × 2	2.31 =	Z3.	_feet		
TIME, MIN.	0 1	1 2	3 4	5	6	7	8	9	10	Q AVERAG
Meter Reading Gallons or	W.0 W	10 12.	1.6 3	الم الحمال	14.2					5.6
Cu. Ft. Take Per Min.	5.6	55 5		5.5 5	لسسيا		I ,		<u> </u>	CFM × 7.
Total Head (HT		1 7 7 12 1	Head (HG)			ure He	ad (Hp	o) -	 ·	lead Losses
60.1	FT. =	3:	7-0	FT. +	Z	3.1	· · · · · · · · · · · · · · · · · · ·	FT	. [O
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	— × .011 t	In. <u>r (ft)</u>	60.	5.60 1 × 10	0.0	×	.042	82 	=	K, CM/Si
TEST 2		offow pressi			, 				·	X = 3.
TIME, MIN.	0 1	2	3 4	5	6	7	8	9	10	Q AVERAG
Meter Reading Gallons or Cu. Ft.										
Take Per Min.										<u> </u>
·					-					
HT	FT.	= Hg		FT. +	HP			FT.	_ HL [
<u>L </u>	FT. Q H × L × .0	L	=	FT. +	H _P	×		FT.	- H _L [K, CM/Si
<u> </u>	<u>Q</u> h × L × .(L		x				FT.	- ر ا	
K = H	<u>Q</u> h × L × .(011 In. L		x	Hp psi × 2		8		- ر ا	
K = H TEST 3 TIME, MIN. Meter Reading Gallons or	Q l _T × L	011 In. L	ıre (Hp)	×	psi × 2	2.31 =		feet	_ [
K = H TEST 3 TIME, MIN. Meter Reading	Q l _T × L	011 In. L	ıre (Hp)	×	psi × 2	2.31 =		feet	_ [
K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	Q l _T × L	011 In. L	ıre (Hp)	×	psi × 2	2.31 =		feet	_ [
K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	Q HT × L × .	011 In. L	ıre (Hp)	X 5	psi × 2	2.31 =		feet	10	

**

-

MONITORING WELL DEVELOPMENT FORM

ES&H 4.4.8.2, Rev.0, 5/95

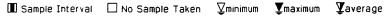
PROJECT NAME Frog Pond Nitro Solineation WORK PACKAGE NO. 487A, Task IL
SHEET 2 OF 2

DEVELOPED BY Layne-Western, Alan Benfer PMC

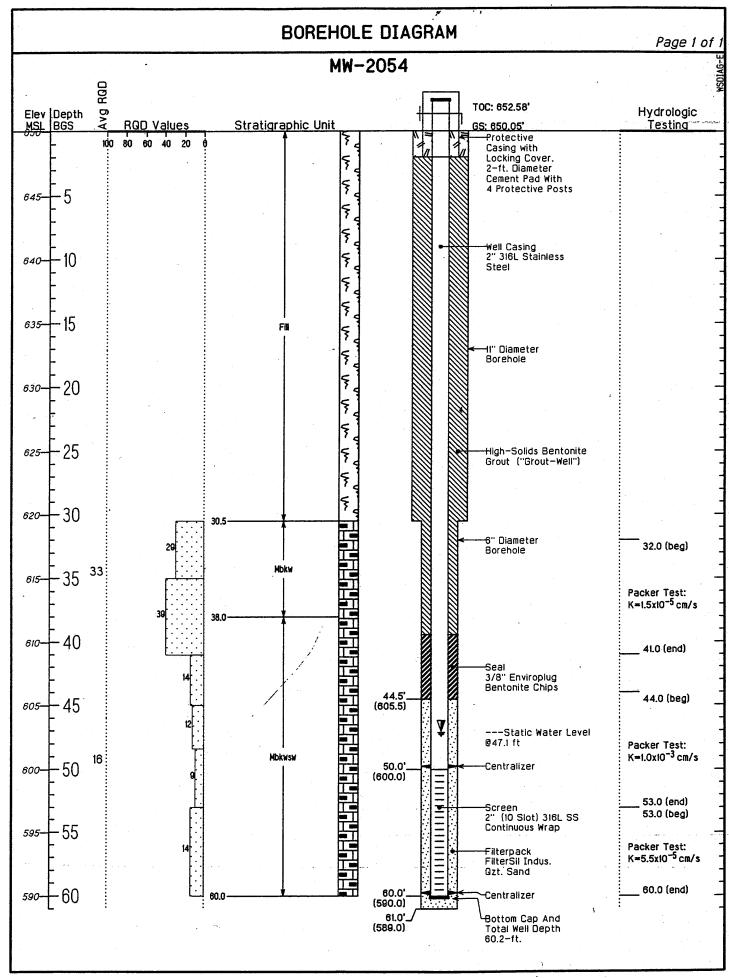
Well Number: MW-2053 Well Locations:

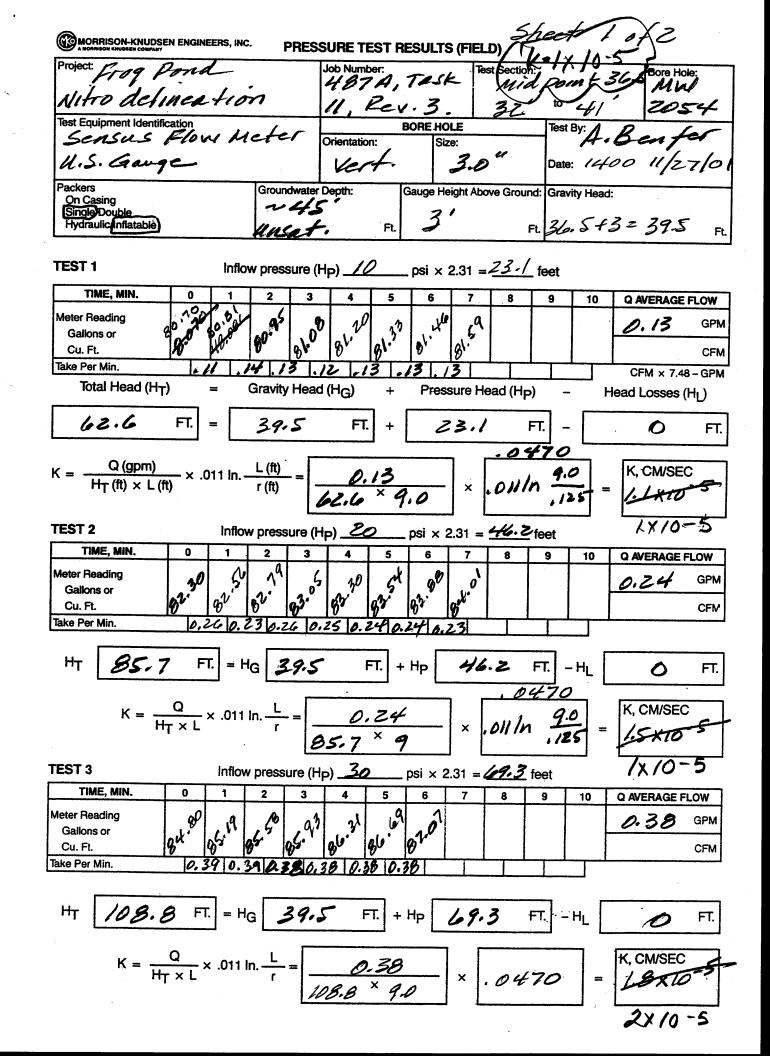
12/13	101				r T	
Date/ Time	Hrs. Dev./ Cum. Hrs. Dev.	Gals. Purged/ Cum. Gals. Purged	pН	Temp.	Cond.	Remarks Turbidity 38-2
1244		30	6.6	12.7	0.93	382
1247	<u>.</u>	35	6.4	13.2	0.91	24.3
1250		40	6.4	13.7	0.88	22.0
1254		45	6.3	13.6	0.86	19.7
1259		50	6.3	13.7	0.95	18.1
1302		55	6.3	13.7	0.86	14.4
Bø5		60	6.4	13.8	0.89	13.9
	-	,				
			-		_	
		-	-			
 						

Good Producer

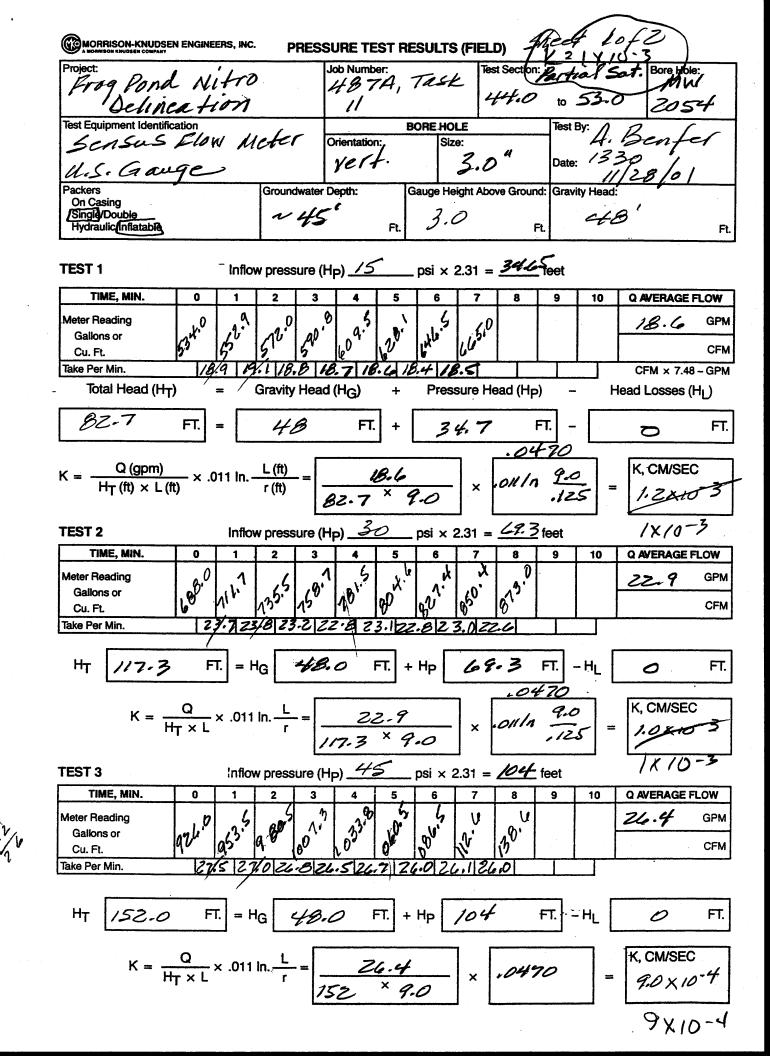

MONITORING WELL DEVELOPMENT FORM

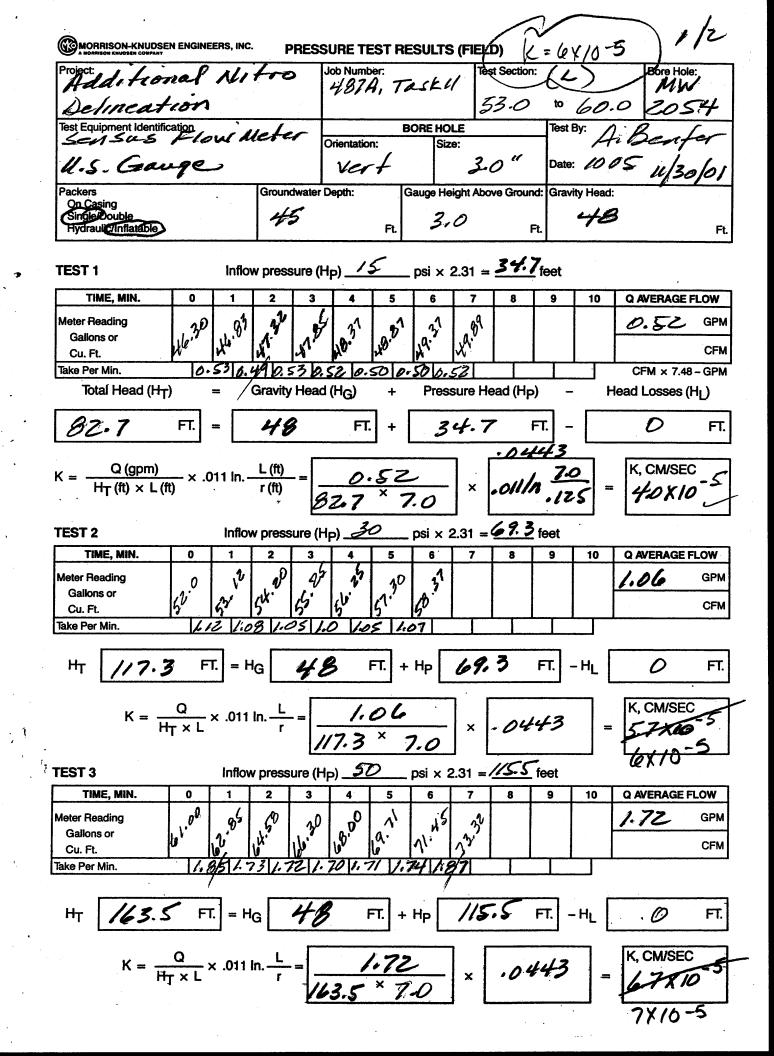
ES&H 4.4.8.2, Rev.0, 5/95


LOJI	ECT NAME Frog Pond Nitro Delineation ORK PACKAGE NO. 487	SHEET 1 OF 2
DEVE	ELOPED BY Layne Western, Alan Benfer PMC	· · · · · · · · · · · · · · · · · · ·
1.	Well Number.:Well Location:	
2.	Date of Installation: 12/1/01	
3.	Date of Development: 12/13/01	
4.	Static Water Level: Before Development 40.4 bgis; At least 24 hrs. after	ft.
5.	Organic Vapor: Before development NA ppm; After development NA	ppm.
6.	Quantity of water loss during drilling, if used: gal.	
7	Quantity of standing water in well and annulus before development: ~/5	gal.
8.	Depth from top of well casing to bottom of well: 58.5' ft. (from Well Installat	ion Diagram)
9.	Well diameter: 2.0 in.	
10.	Screen length: Jo. 0 ft.	
11.	Minimum quantity of water to be removed: 23 gal.	•
12.	Depth to top of sediment: Before development NA ft; After development	ft.
13.	Physical character of water (before/after development): Cloudy / Clear	
14.	Type and size of well development equipment: Grund fos Redi-Flo Sun	bmer. pump
15.	Description of surge technique: 1/2" baster up and down	
16.	Height of well casing above ground surface:ft. (from Well Installa	tion Diagram).
- -	Quantity of water removed: 60 gal. Time for removal: 1/2	hr./min.


		WEL	DOI	N SF	RIN	NG SITE REMEDIAL AC	ΓΙΟΝ PROJE	СТ		V-2054
		·B	OR	EH	OLE	E AND WELL COMPLE	TION LOG		SHEET 1 OF 2	10000
WELL S	TATUS/	COMMEN	ITS			LOCATION			ខ្លី 10	42960.26
ACT	IVE		•	· ·		EAST OF DISE			TOC ELEVATION	55929.99
	NE WES	STERN	Inc.		- 1	CME-750 HSA	/NQWL: I-R TH-60		GROUND ELEVATION	652.58
	ISA-30).5; NQ	-60;	6" AI	R-61	ANGLE FROM HORIZONTAL & BEARING Vertical CASING TYPE, DEPTH, SIZE			STICKUP	650.05
	er core	e; Air re				2" 316 SS Mon. Well DATE FINISH	<u>⊑</u> 30.5	S & DATES		2.53 Y (cm/sec)
	1	1-26-C	1	1		12-6-01, Mon. Well	WATER LEVEL	, I	HYDR CONDUCTIVI K= 1.5x10	· · · · · · · · · · · · · · · · · · ·
ı	SAMPLE SAMPLE/RUN	N S	8	GRAPHIC LOG	Š"	ALAN BENFER/BEC	KY CATO	TIN	WELL DIAGRAM	ELEVATION
DEPTH feet	PLE P	PERCENT Recovery	or RGD	SE	SOIL/ROCK class	DESCRIPTION AND R	EMARKS.	<u>⊢</u> -	1	VAV
	SAM	8.8	1	GRAF	SOJ	DESCRIPTION AND R	- EMANKS	STRA	1	
		_ h100		5	FILL			↑ Prote		
_		-		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		<u></u>	•	Locki	g with ng Cover.	
		Í		53	l	Soil not sampled or logged from the 20-ft.	ne surface to	Ceme	Diameter nt Pad With	
				~ ~ ~			•	4 Pro	tective Posts	
5-				5 5		The state of the second				64
٠				3 5						
4				7 5	1	_				
4				12	l	-				
- 4				\\ \frac{1}{5} = \\ \fr	Ì				asing	→ 💹 📗
10-				5 5				2" 316 Steel	SL Stainless	640
4	ı			2 5		-				
4				3 5		-	•			
	1			7 5		· .				
4				>						
15-				× ×		_		≡		635
. 1				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-				
1				5		-	. •	11" Dia Boret	meter	
1				~ ~		<u> </u>				
<u>,</u> 1				7 5						
20	SPT-	1	13	W W		CLAY, silty, with some pebbles and	organics, Fe0x,			630
]				>		brown, stiff, CL- CH. Fill. @ 21.5'. pebbles and sand.	As above with			- M
				~ W.						
				53		-				
25-	SPT-2	,	21	~ W.		_	•		Solids Bentonite	625
				1 7		CLAY, high plasticity, with limeston fragments, some FeOx staining, lig		Grout	("Grout-Well")	
#	4			W W			G-77			
4				W W		<u>-</u>				
4		.		1						
30-	SPT-3		20+ 29	5 5		LIMESTONE AND CHERT, strongly clay.	weathered, with			620
1	NG-1	43/54"	28		CHRT	Auger refusal at 30.5-ft. Continue		∠ ↑		
4						LIMESTONE, moderately weathere hard, some styolites, some oxidize	d, locally	6" Dia Boreh	meter	
1						fossiliferous, light gray and light b with ~30% chert, light gray. Does	not appear to be	Boreh		
▗▗╴╢						water bearing. 3 to 6 fractures popen, several spun, all are horizon	tal, minor rubble			
35-	NQ-2	49/72"	39			zones. Weathered Burlington-Keo	KUK LIMESTONE.			
n						ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν ν	-			
Sample	Interv	ai 🗆	No S	ample	Taker	n $ abla$ minimum $ abla$ maximum $ abla$ averag	е			

		W/ E	: r)UV	1 20	BIN	G SITE REMEDIAL ACTION PROJECT			HOLE NUM		-20	154
		71							ပု	SHEET 2			,
			B(JR	EH(ULE	AND WELL COMPLETION LOG		MLOG	NORTH (Y)	10	42960	7 26
ELL S	TATL	S/COM	MEN'	TS			LOCATION		<u>δ</u>	EAST (X):			
ACT	TIVE				 	1	EAST OF DISPOSAL CELL	1.			7	55929	9.99 T
	SAMPLE SAMPI E/RIIN		ح -	ROD	SRAPHIC LOG	충		LINI		WELL DIA	GRAM		NO.
иел I н feet	191.	ia P	Recovery	or R(일	SOIL/ROCK class		1. •					ELEVATION
or fe	SAN	N	ge.	* Z	AP.	임디	DESCRIPTION AND REMARKS	STRAT					LE)
	ď	5	100		99	1		S			- 63	- KV	- in
		49	∑ /72"			CHR	No fluid return for the entire core, 30.5' to 60.0'.						
		İ				d	 @ 34'. 3' long vertical styolite. @ 34'- 35'. Mostly chert with thin MnOx streaks. 	MDKW					'
							• @ 35'. LIMESTONE as above, moderately	¥					
٦					F	}	weathered, generally coarse- grained.	1				. 🛭	١.
1						7	@ 37.4'-37.8'. Chert breccia.	Ш					
10-					F.	ן ו	 @ 38'- 4i'. LIMESTONE, strongly weathered, with chert, hard, light gray, fossiliferous. One to 4+ 						61
7	N	3-3],,,,	14	H		fractures per foot, rough, open, some rubble. Strongly Weathered Burlington-Keokuk Limestone.	Ш					1
Ħ		1221	70		丰	ן ן	© 40.7'- 41.0'. Limestone fragments with brown	$\ \ $	Seal 3/8" Env				-
. †		· .	.				- clay		Bentonit	e Chips			
_ +					計		NQ-3, 41.0 - 45.0 Poor recovery, loss zones unknown. Chert, fossiliferous, some thin MnOx			•			
5-	NO	1-4		12	발		 streaks, light gray to light yellow brown, thinly interbedded with ~30% limestone, strongly 						60
4		29/	41"		岀		 weathered, argillaceous, minor solutioning, some styolites, orange brown. 		·				
4						} }	- @ 45'. CHERT, abundant thin streaks of MnOx, bluish	$\ \ $	¥Stat	c Water Le	vel		
4	.			9			gray to light brown, interbedded with ~30% strongly weathered limestone, very vuggy. ~12+ fractures,	3.	@41.11t				
4	III NO	1-5 Z4/	55"	Э		} }	heavily eroded, weak.	MDKWSW					
0-							_ @ 48.7'~ 49.1'. Drilled fast.	포	Centraliz	er	**	_	60
4							CHERT AND LIMESTONE as above, limestone is soft, but less vuggy. Heavily fractured and broken with					=[]	
-		-					rubble. Poor recovery.					= /]	
4	NU	-6	۱ ۲	14			NQ-6, 53'- 60'. Loss zones unknown. Mostly		Screen-	.) 5:5: ==		≣	
4		-6 507	84"				strongly weathered limestone, orange brown, argillaceous, locally vuggy, soft, weak, with ~30%	$\ \ $	2" (10 SI Continuo	ot) 316L SS us Wrap		Ξ	
5-							scattered chert containing abundant oxidized pyrite near the top of the core. 12+ horizontal					<u> </u>	59
_							fractures with rubble. Strongly Weathered Burlington-Keokuk Limestone.					∃ [[]	
4							- בין אווענטוז־הפטאטא בוווופגנטופ.		Filterpac FilterSil I	ndus.	•	∃	
									Ozt. San			=[/	
												<u> </u>	
0-					=			1	Centraliz	er		= -	59
۲							Total cored depth 60.0', 11-30-01. Hole reamed to 6" diameter to 61.0' and a 2" monitoring well was		Bottom C Total We				
							constructed.		60.2-ft.	ւ ոշիւս			
									6" Hole	·o			
									61.0-ft.				
5–							CONSTANT HEAD SINGLE PACKER TEST RESULTS						58
ر							32.0 - 41.0-ft. K = 1.5E-5 cm/sec 44.0 - 53.0-ft. K = 1.0E-3 cm/sec						
						[[53.0 - 60.0-ft. K = 5.5E-5 cm/sec						
٦											•		
7													
٦													
0-							<u>-</u> -						58
4							•						
1							•						
-							•						
-													
5-							_						1




								(FIEL	υ,				
Project: Frog Pond		La		J	lob Numb	per:	· ch ·	/	st Section				Hole:
Delinear	tion	7	•		4 <i>0</i> [A	t, 7 A	ski	3	-5	4/		, Ben	1W 054
Test Equipment Identific	ation					8	ORE HO	LE L		Test	By: /	2	Car
Sensus A			tel		Orientatio		Siz		~ "		4	isen	fer
U.S. Gau	<u> 1</u>				Ver			3.0				27/0	./
Packers On Casing				dwater D		G	auge He	ight Abo	ve Grou	nd: Grav	vity Head	•	
Single/Double Hydraulic/Inflatable	•		12	45	,	Ft.	3	0		Ft.	39	3.5	-
			W N	SAT		<u></u>							Ft.
TEST 1		Inflo	w pres	sure (H	P) _ / C	<u></u>	psi × 2	2.31 =	23.1	_ feet			_
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERA	GE FLOW
Meter Reading	00	19	1	10	مام ا	,3	30					0.17	7 GPM
Gallons or Cu. Ft.	81.30	81.	87.	81.	61.	98'	80.						CFM
Take Per Min.	0.		150.1	7 0.		170	.17					CFM ×	7.48 – GPM
Total Head (H _T)) ,	=	Gravity	/ Head	(H _G)	+	Press	sure He	ead (Hp	-) - 	- ŀ	lead Loss	es (Hլ)
62.6	FT.	= [39.	5	FT.	+	2	3.1		FT		0	FT.
Q (gpm)			1 (ft)	Г		. =		1				K CM	SEC]
$K = \frac{\text{Gaphi}}{\text{H}_T(\text{ft}) \times L(\text{ft})}$	$\frac{1}{t}$ × .0	11 ln	r (ft)	-= _		.17	·	_×	.04	170		K, CM/	10-5
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	•		. ()	10	2.6	^ Q	2.0	1 1		_		12.40	10
											1	1 /1	/ / N ~~
TEST 2											- √√	= 14	(/ <u>0</u> -5)
	0						psi × 2					= 1.4	
TEST 2		Inflo	w press	sure (H	P)		psi x 2	2.31 =		_ feet			
TEST 2 TIME, MIN. Meter Reading Gallons or		Inflo	w press	sure (H	P)		psi x 2	2.31 =		_ feet			GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft.		Inflo	w press	sure (H	P)		psi x 2	2.31 =		_ feet			GE FLOW
TEST 2 TIME, MIN. Meter Reading Gallons or		Inflo	w press	sure (H	P)		psi x 2	2.31 =		_ feet			GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft.		Inflox	w press	sure (H	P)	5	psi x 2	2.31 =		feet 9			GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. H T	O F	Inflor	w press	sure (H	P)	5	psi × 2	2.31 =		feet	10	Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. H T	O F	Inflor	w press	sure (H	P)	5 FT. +	psi × 2	2.31 =		feet	10 - H _L	Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.	O F	Inflor	w press	sure (H	P)	5	psi × 2	2.31 =	,	feet	10	Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. H T	O F	Inflor 1 7. = H × .011	w press	sure (H	P)	FT. +	psi × 2	2.31 = 7	8	feet	10 - H _L	Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT	O F	Inflor 1 7. = H × .011	w press	sure (H	P)	FT. +	psi x 2	2.31 = 7	8	feet 9	10 - H _L	Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. K = H	F Q T × L	Inflov 1	w press	sure (H	p)	5 FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	- H _L [Q AVERA	GE FLOW GPM CFM FT.
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or	F Q T × L	Inflov 1	w press	sure (H	p)	5 FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	- H _L [Q AVERA	GE FLOW GPM FT. SEC GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	F Q T × L	Inflov 1	w press	sure (H	p)	5 FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	- H _L [Q AVERA	GE FLOW GPM CFM FT. SEC
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or	F Q T × L	Inflov 1	w press	sure (H	p)	5 FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	- H _L [Q AVERA	GE FLOW GPM FT. SEC GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.	F Q T×L	Inflov 1 Inflov 1	w press In. L r	sure (H	p)	FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	10 HL [Q AVERA	GE FLOW GPM CFM FT. SEC GPM GPM CFM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft.	F Q T × L	Inflov 1 Inflov 1 Inflov	w press In. L r	sure (H	p)	FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	10 HL [Q AVERA	GE FLOW GPM FT. SEC GE FLOW GPM
TEST 2 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min. HT K = H TEST 3 TIME, MIN. Meter Reading Gallons or Cu. Ft. Take Per Min.	PT CO FT	Inflov 1 Inflov 1 Inflov 1	w press In. L r v press 2	sure (H	p)	FT. +	psi x 2	2.31 = 7 7 	8	feet 9 FT.	10 HL [Q AVERA	GE FLOW GPM CFM FT. SEC GPM GPM CFM

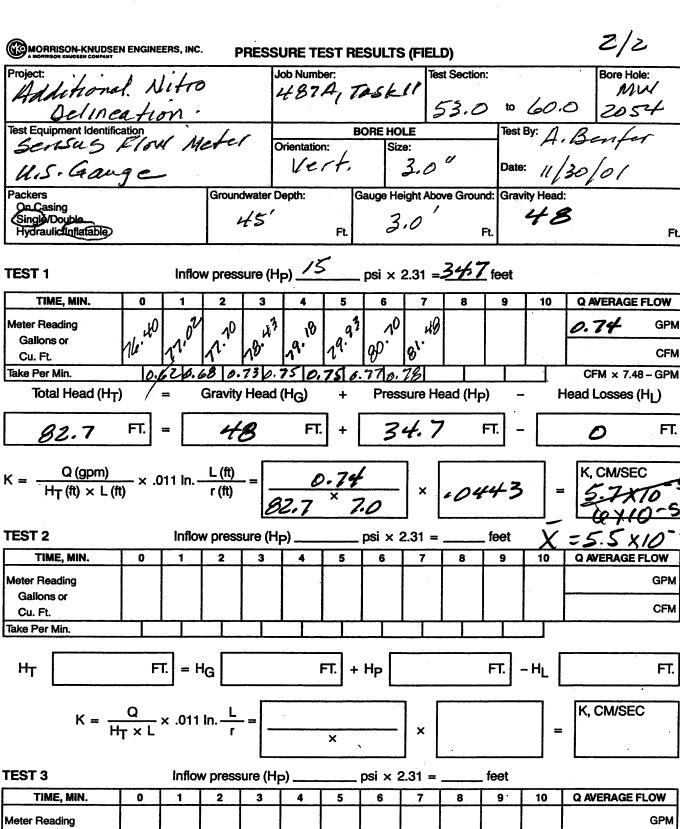
PRESSURE TEST RESULTS (FIELD)

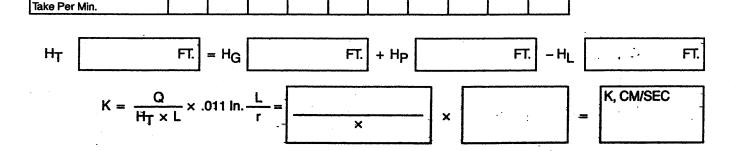
Project: Frog Pond	1 1	ito	9		ob Numb				t Section	:		Bore Ho	
Delinea	+10	n		4	1874	, Ta	sk h	2	14	to	53	203	
Test Équipment Identific	ation					В	ORE HOL	.E		Test	By:	Bent	
Scusus V	Zlow	4 Me	eter	~ 0	rientation	n: _	Size						
U.S. Gav					Ver	÷,		3.0) "	Date	: [[[28/01	
Packers On Casing			Ground	dwater D	epth:	G	auge Hei	ight Abo	ve Grour	d: Grav	ity Head:		
Single/Double Hydraulic/Inflatable			~	45		Ft	3.0	2	1	=t.	48	• •	Ft
TEST 1		Inflov	v press	sure (H	P) _/3	<u> </u>	psi × 2	2.31 🚅	34-63	feet			
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE	FLOW
Meter Reading	l n	٩	1	1.1	a.u	9) \ \	3	,0	. \		16.3	GРM
Gallons or Cu. Ft.	15.0	مي	vo^.	227	27	25.9	22.	200	204.0	321.			СҒМ
Take Per Min.	15	5.916	.216	.6 15	9 14	.2.14	.3 10	14 14	.3			CFM × 7.4	18 - GPM
Total Head (H _T))	= -	Gravity	Head	(HG)	+	Press	sure He	ead (H _F	o) -	·	lead Losses	(H ⁱ)
82.65	FT.	=	48	-0	FT.	+	تخ	efile	5			<u> </u>	FT.
									.04	170		14.0140	
$K = \frac{Q (gpm)}{H (g)}$	×)11 ln	L (ft)	-=		16.3	• !		3116	, 7	-	K, CM/SE	C _ 3
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	t)		r (tt)	8	2.7	×	7.0			12	5 =	1-0X	10 2
						•					_	/ //	<i>></i>
TEST 2		Inflo	v press	sure (H	P)		psi x 2	2.31 =		_ feet	X	= 1.0 X	
TIME, MIN.	0	1 .	2	3	4	5	6	7	8	9	10	Q AVERAGE	FLOW
Meter Reading				1									GPM
Gallons or Cu. Ft.													CFM
Take Per Min.	' 	<u> </u>			Т-	<u> </u>	4		' 	<u>' T</u>	\vdash	<u> </u>	
									*				1
HT	F	T. = H	lg [FT.] +	· HP			FT.	- HL [FT.
•	0		i					7 [· · ·		_	K, CM/SE	ic
K = -	u T x L	× .011	In	-= _				×			=	1	
•			•			×							
TEST 3		Inflo	w press	sure (H	P)	-	psi × 2	2.31 =		feet			
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVERAGE	FLOW
Meter Reading													GPM
Gallons or					İ								СҒМ
Cu. Ft. Take Per Min.		L	L		Ц	Ц		Ψ-		L	L	L	لـــــــــــــــــــــــــــــــــــــ
or or mill.									i				
<u> </u>		귀 .	, $ egin{array}{c} \end{array}$				u F			<u>_</u>	ا		FT.
Нт [F	T.] = F	¹G			FT.] +	HP			FT.	- 7.		Г1.
	_			_				7 [K, CM/SE	C
K = -		× .011	In. L	-= _								IN, CIVISE	

Ft.

GPM

CFM


FT.


GPM

CFM

FT.

CFM

Gallons or

Cu. Ft.

MONITORING WELL DEVELOPMENT FORM

ES&H 4.4.8.2, Rev.0, 5/95

חח	ECT NAME rog Pond Nitro Delincation ORK PACKAGE NO 1874	Task 11
		SHEET 1 OF 2
DEVE	LOPED BY Layne Western, Alan Benfer PMC	
1.	Well Number.: MW-2054 Well Location: E- of	ccl
2.	Date of Installation: 12/6/01	
3.	Date of Development: 12/13/01	
4.	Static Water Level: Before Developmentft.; At least 24 hrs. after	ft.
5.	Organic Vapor: Before development NA ppm; After development NA	ppm.
6.	Quantity of water loss during drilling, if used: gal.	
7	Quantity of standing water in well and annulus before development: 7.2	gal.
8.	Depth from top of well casing to bottom of well: 62.5 ft. (from Well Installation	on Diagram)
9.	Well diameter: 2.0 in.	
10.	Screen length: 10.0 ft.	
11.	Minimum quantity of water to be removed gal.	_
12.	Depth to top of sediment: Before development NA ft.; After development	ft.
13.	Physical character of water (before/after development): Muddy / Clear	•
14.	many size of well development equipment: Barled Well St. 1844	ues
15.	Description of surge technique: West Grandfos Redi-Flo Su	buer · flund
16.	Height of well casing above ground surface: 2.5 ft. (from Well Installate	ion Diagram).
		hr./min.

MONITORING WELL DEVELOPMENT FORM

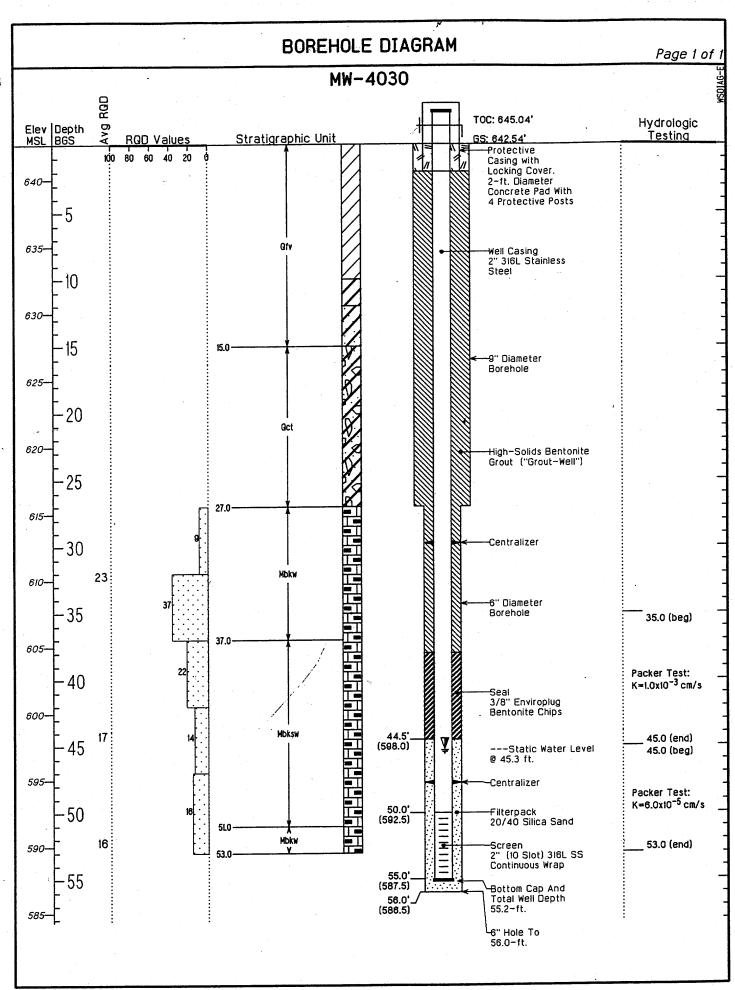
ES&H 4.4.8.2, Rev.0, 5/95

PROJECT NAME Frog Pond Nitro Definention ORK PACKAGE NO. 487A, Task 11

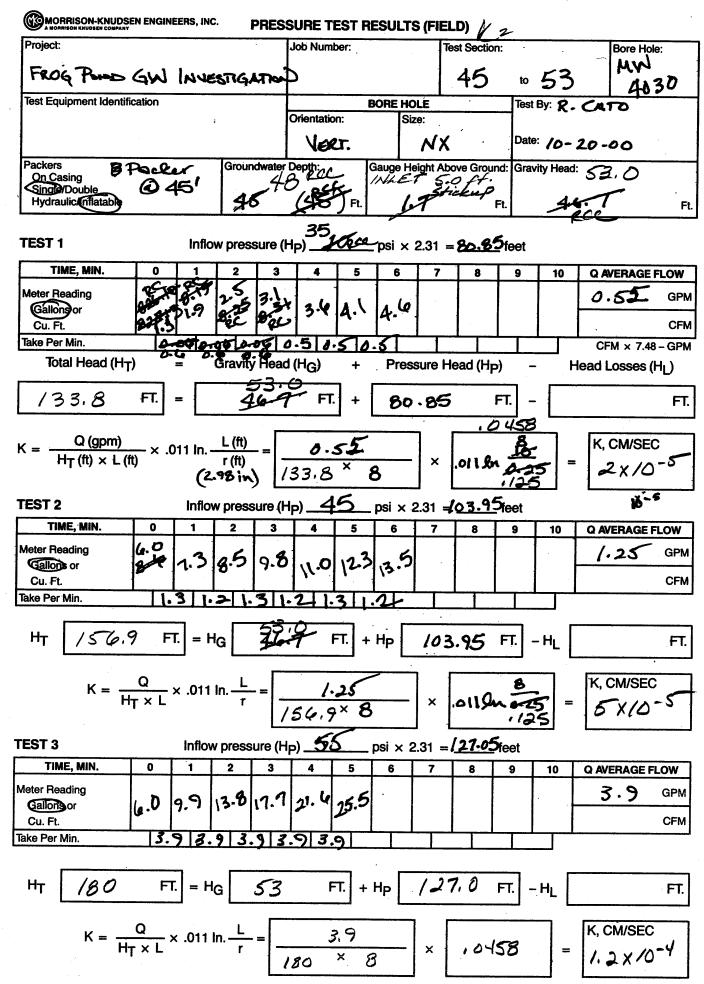
Well Number: MW-2054 Well Locations: W E. of Cell, N. and

Date/ Time	Hrs. Dev./ Cum. Hrs. Dev.	Gals. Purged/ Cum. Gals. Purged	pН	Temp.	Cond.	Remarks Turbidity
0955	7	17	7.0	12-2	284	104
005	-	22	6.9	13.3	0.79	55.2
008		24	6.7	14.0	0.72	\$8.2
010		26	6-7	14.0	0.83	28.7
1013		28	6-7	14.1	0.82	37.0
1018		31	6.7	13.9	0.79	10.7
1021		33	6.7	13.8	0.82	15.8
		•				
•						
· . · · · · · ·				<u> </u> -	<u> </u>	_
		1				_
	·· %	-				
						·
		-				\$
						,

pumped another 6-gals, 39 gals total.

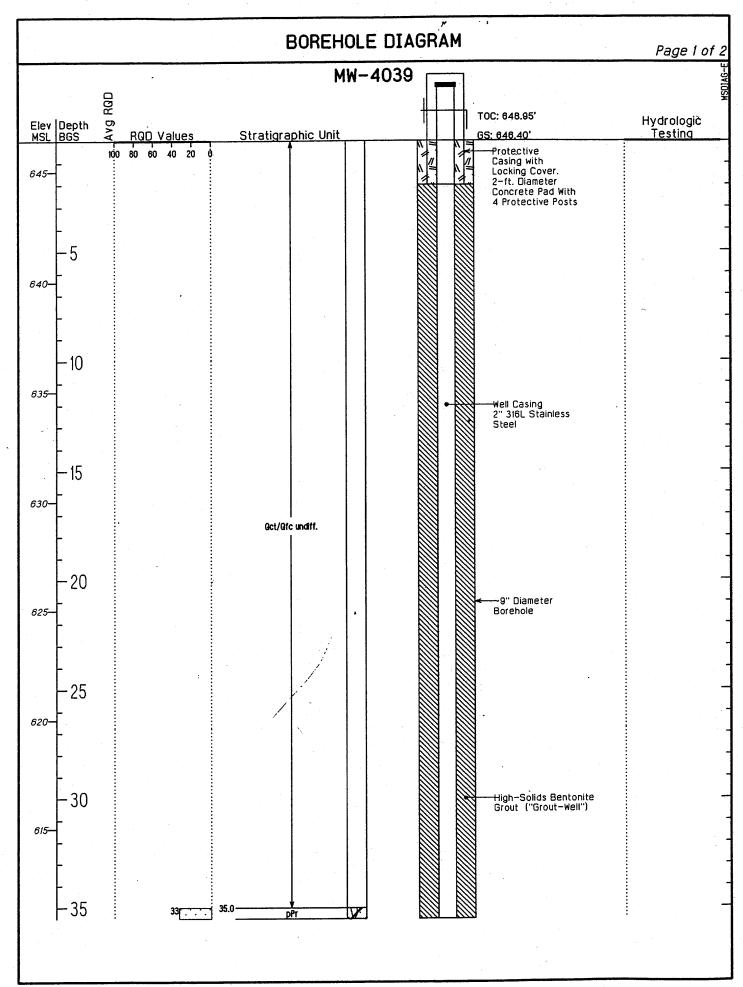

3 Well Vols = Z.A. 6 gals.

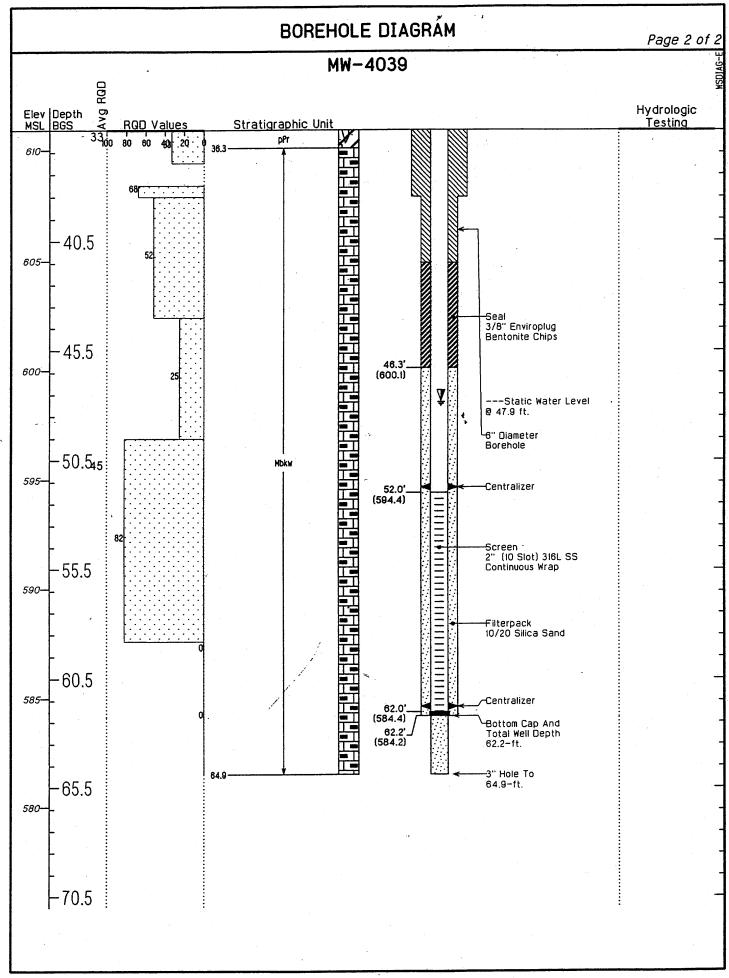
LI STATUS/COMPENTS ACTIVE DORTHOLOGY ACTIVE DORTHOLOGY ACTIVE DORTHOLOGY DORT		•					NG SITE REMEDIAL AN E AND WELL COMPL			9	SHEET 1 OF	2 2		
TILLING CONTROLOGY AND EPT ISPOSAL CELL, NEAR FROS POND TO ELEVATION 445.6. THE STERN Inc. THE STERN INC.	,, AT	TIC /6'								9	NORTH (Y):	104	340	3.1
LAYNE WESTERN Inc. EME-750 HSA/NXHI, 1-R TH-60 AIR ROTARY SPECIAL STATES AND PARTS AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL S BERRING SPECIAL STATES AMSE PROM HORIZONTAL STATES	ACTIV	VE					NE OF DISP		OG PONE	'			6457	7.2
THE FULLOS & ADDITIVES CASING TYPE, DEPTH, SIZE 2 316 SS Mon. Well E START 0-12-00 INTE FINISH 0-25-00, Mon. Well ALAN BENFER DESCRIPTION AND REMARKS DESCRIPTION AND REMARKS DESCRIPTION AND REMARKS OF 1-12 OF 1-2 OF 1-3 OF 1-3 OF 1-4 OF 1-4 OF 1-4 OF 1-5 OF 1-5 OF 1-5 OF 1-5 OF 1-5 OF 1-5 OF 1-7 OF 1-	LAYN	E WEST	ERN	Inc.			CME-750 H	SA/NXWL: I-R TH-60	AIR ROT	ARY			645	5.0
Mater cores, hir ream 2.* 316 SS Mon. Nell 2.* 316 SS Mon. Nell 3.* 42.5 4.* 42.5	9" HS	A-27;	NX-5	3; 6"		56		NG S BOTTOM OF H	ULE (IU)			AITON	642	2.5
SPT-0 S	Water	core;			ES 		2" 316 SS Mon. Well	24.5						2.
ALAN BENFER WELL DIAGRAM DESCRIPTION AND REMARKS DESCRIPTION AND REMARKS DESCRIPTION AND REMARKS OF TOTAL DIAGRAM CL as above, mostly deliver dight gray (forra?/l) and browns yellow (10YR0/d), damp, hard. CL as above, mostly deliver dight gray (10YR7/d). CL as above, with plasticity, sickensided, motited brownish yellow (10YR0/d) and ging gray (10YR7/d). CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), damp, hard. CL as above, very pale brown (10YR0/d), mostly firm, DL Ferreived Clay. SPT-8 SPT-8 SPT-8 SPT-9 CH Clay high plasticity, -iSX fine to coarse angular sand and angular fine gravel with MnOx and FeOx, motted brownish yellow and glight gray, nitox, mostly brownish, hard, CH. Clay Till. CH as above, angular gravel up to 17; sickensided, weak red (2YRF6/d) in bot sampler shoe. CLAY, high plasticity, -iSX fine to coarse angular sand and angular fine gravel with MnOx and FeOx, motted brownish yellow and glight gray, nitox, mostly brownish yellow and glight gray. Diagneter gravel tragents, mostly pale brown (10YR6/d), mostly hard, CH. Clay Till. SPT-8 SPT-9	TE STA		-12-0	0			10-25-00, Mon. Well	ES WATER LEVELS	S & DATE	5				
SPT-0 CL CLAY, sity, medium plasticity, notited orange brown and light gray, dry, hard, CL. Ferrelwiew Clay. CL as above, motified light gray (10YR7/l) and brownish yellow (10YR6/d), damp, hard. CL as above, mostly very pale brown (10YR7/d). SPT-0 CL as above, mostly very pale brown (10YR7/d). CL as above, very pale brown (10YR7/d). CL as above, very pale brown (10YR7/d). CL as above, very pale brown (10YR7/d). SPT-0 CH CLAY, high plasticity, sicknesided motified brownish yellow (10YR6/d) and light gray (10YR7/l), moist, firm, Ch. Ferrelview Clay. SPT-0 CH CLAY, high plasticity, -15% fine to coarse angular sand and angular inne gravel with whito and Fe0x, ell. Clay Tish. yellow and light gray (10YR7/l). CH as above, welly fe0x and Mr0x, -10X fine white sand, and angular inne gravel with whito and Fe0x, ell. Clay Tish. yellow and light gray innet, bed. ell. Clay Tish. yellow and light gray innet, bed. ell. Clay Tish. yellow and light gray innet, bed. ell. Clay Tish. yellow and light gray innet, bed. ell. Clay Tish. yellow and light gray innet, bed. ell. ell. Clay Tish. yellow and light gray innet, bed. ell. ell. ell. Clay Tish. yellow and light gray innet, bed. ell. ell. ell. ell. ell. ell. ell. e		NS.	T y	OC	90-	K	ALAN BEN	FER	ΙΝ		WELL DIAGR	ΔМ [_	
SPT-0 20 CL AY, sitty, medium pleaticity, nettled orange brown and light gray, dry, hard, CL. Ferrelview Clay. SPT-1 28 CL as above, motified sight gray (SVPR7/I) and Drownish yellow (IOYR6/6), damp, hard. CL as above, mostify very pale brown (IOYR7/4). SPT-5 SPT-6 CL as above, rostify very pale brown (IOYR7/4). CL as above, very pale brown (IOYR7/4). CL as above, very pale brown (IOYR7/4). CL as above, very pale brown (IOYR7/4). SPT-6 CH CH as above, with FeOx and MrOx, -IOX fine white sand. Basal Ferrelview Clay. CH SPT-9 CH CH as above, with FeOx and MrOx, -IOX fine white sand and angular fine gravel with MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and MrOx and FeOx, eld. Clay Tides hy leive and Rept gray. Institute of the sampler shoe. CLAY, high plasticity, with angular weathered linestone gravel tragments, enoxy, pale brown (IOYR6/5), most, hard, Ch. Clay Tides and the gravel tragments of the property of the pr	SAMPLE	SAMPLE/F Number		or	GRAPHIC I	SOIL/ROI	. DESCRIPTION AND	REMARKS		•	NEEC DIAGO.			TACE FASTER IN
SPT-0 28 CL as above, mottled light gray (10YR7/1) and brownish yellow (10YR6/6), damp, hard. CL as above, mostly very pale brown (10YR8/2), damp, hard. CL as above, mostly very pale brown (10YR8/2), damp, hard. CL as above, very pale brown (10YR7/4). SPT-5 14 CL as above, very pale brown (10YR7/4). CL as above, very pale brown (10YR7/4). CL as above, very pale brown (10YR7/1), moist, frim, CL Ferrelived Clay, sickensided, mottled brownish yellow (10YR6/6) and kight gray (10YR7/1), moist, frim, CL Ferrelived Clay. SPT-0 SPT-0 15 CH as above, with FeOx and MrOx, -10X fine white sand. Basal Ferrelived Clay. CH as above, -30X sand and fine gravel. CH as above, -30X sand a			ı iux	20		CL	CLAY, silty, medium plasticity, m and light gray, dry, hard, CL. F	ottled orange brown errelview Clay.	1					\prod
CL as above, mbstly very pale brown (IOYR8/2), damp, hard. CL as above. CL as above. CL as above. CL as above, very pale brown (IOYR7/4). SPT-6 12 CH CLAY, high plasticity, sickensided, mottled brownish yellow (IOYR6/6) and light gray (IOYR7/1), molst, firm, Ch. Ferreinven Clay. SPT-7 15 CH CH as above, with Fe0x and MnOx, ~IOX fine white sand. Basal Ferreinven Clay. SPT-9 15 SPT-9 15 CH Clay, high plasticity, -iSX fine to coarse angular sand and angular fine graved with MnOx and Fe0x, molt ted townshish yellow and light gray, molst, herd., CH. Clay Till. CH as above, angular gravel up to I'', sickensided, weak red (12/SPK6/1) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel fraginents, softly pale brown (IOYR6/3), molst, hard, CH. Clay Till. CH as above, mostly belowish red (SYR5/6) with weathered limestone gravel fraginents, softly pale brown (IOYR6/3), molst, hard, CH. Clay Till. SPT-13 SPT-14 SPT-15 SPT-16 CLAY, high plasticity, with weathered limestone fraginents, MnOx, mostly brownish yellow, moist, hard, CH. Clay Till. CH as above, mostly brownish yellow, moist, hard, CH. 9 26', CH with weathered limestone fragments. LIMESTONE AND CHERT, with high plasticity clay from the part of the pa	-	SPT-2		28			CL as above, mottled light gray brownish vellow (IOYR6/6), dam	(10YR7/1) and		Locking 2-ft. Di Concret	Cover. ameter te Pad With			6
CL as above. CL as above, very pale brown (IOYR7/4). CL as above, very pale brown (IOYR7/4). CL as above, very pale brown (IOYR7/4). SPT-6 12 CH CLAY, high plasticity, sickensided, mottled brownish yellow (IOYR6/6) and light gray (IOYR7/1), moist, firm, CH. Ferrelview Clay. CH CH as above, with FeOx and MrOx, ~IOX fine white sand. Basal Ferrelview Clay. SPT-8 SPT-9 I5 CH CH Clay, high plasticity, -ISX fine to coarse angular sand and angular fine gravel with MrOx and FeOx, mottled brownish yellow and light gray, moist, hard, CH. Clay Till. CH as above, angular gravel up to 1". slickensided, weak red (ZSYR6/1) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel fragments, mostly pale brown (IOYR6/3), moist, hard, CH. Clay Till. SPT-B SPT-B SPT-B CLAY, high plasticity, with angular weathered limestone gravel fragments, mostly pale brown (IOYR6/3), moist, hard, CH. Clay Till. CH as above, angular gravel up to 1". CH as above, mostly yellowish red (SYR5/6) with weathered limestone gravel up to 1". CLAY, high plasticity, with mount and the gravel up to 1". CLAY, high plasticity, with weathered limestone fragments, hroo, mostly brownish yellow, moist, hard, CH. Clay Till. CH as above, angular gravel up to 1". CLAY, high plasticity, with mostly prownish yellow, moist, hard, CH. Clay Till. CH as above and the most of the prownish yellow, moist, hard, CH. Clay Till. CH as above, mostly brownish yellow, moist, hard, CH. Clay Till. CH as above, and the most of the prownish yellow, moist, hard, CH. Clay Till. CH as above, and the most of the prownish yellow, moist, hard, CH. Clay Till. CH as above, and the most of the prownish yellow, moist, hard, CH. Clay Till. CH as above, angular gravel up to 1". SPT-B SP	118	SPT-3		26			CL as above, mostly verý pale	· · · · · · · · · · · · · · · · · · ·		•				
CL as above, very pale brown (IOYR7/4). SPT-6 12 CH CLAY, high plasticity, slickensided, mottled brownish yellow IOYR6/6) and light gray (IOYR7/1), moist, firm, CH. Ferrelview Clay. SPT-7 16 CH CH as above, with Fe0x and Mn0x, ~10% fine white sand. Basal Ferrelview Clay. SPT-8 13 CH Clay, high plasticity, ~15% fine to coarse angular sand and angular rine gravel with Mn0x and Fe0x, mottled brownish yellow and light gray, moist, hard, CH. Clay Till. CH as above, ~30% sand and fine gravel. CH as above, angular gravel up to 1", slickensided, weak red (2,5YR5/) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel rragments, mostly pale brown (IOYR6/3), moist, hard, CH. Clay Till. CH as above, mostly vellowish red (5YR5/6) with weathered limestone gravel up to 1". SPT-B SPT-B SPT-B 23 SPT-B CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with high plasticity clay from 27 2' to 27.9", reddish brown (7.5YR6/8). Limestone is moderately weathered and moderately hard, minor oxidized pyrite, light gray, with minor chert. Weathered Burington-Keokuk Limestone. P 27.9" - 30.1". Core loss is probably clay based on drill cuttings. P 30.1" - 30.5". Limestone rubble. P 30.5". Lost circulation permanently. 31.4" 32.0". Chertly limestone. P 31.7". Fractures are oxidized; possibly water	+	SPT-4		20		-	CL as above.	•	 					
SPT-8 13 CH Chas above, with FeDx and MrDx. ~10% fine white sand. Basal Ferrelview Clay. CH as above, with FeDx and MrDx. ~10% fine white sand. Basal Ferrelview Clay. CH Clay, high plasticity, ~15% fine to coarse angular sand and angular fine gravel with MrDx and FeDx, mottled brownish yellow and light gray, most, hard, CH. Clay Till. CH as above, angular gravel up to I", slickensided, weak red (2.5YR5/1 in the of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel fragments, mostly pole brown (10YR6/3), most, hard, CH. Clay Till. SPT-II 21 CLAY, high plasticity, with angular weathered limestone gravel fragments mostly pole brown (10YR6/3), most, hard, CH. Clay Till. SPT-II 33360" SPT-II 58+ CLAY, high plasticity, with weathered limestone fragments, mostly prownish yellow, moist, hard, CH. @ 20; CH with weathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone fragments. CLAY, high plasticity, with meathered limestone. CLAY, high plasticity, with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered limestone. CLAY, high plasticity with meathered		SPT-5		14			CL as above, very pale brown	(IOYR7/4).		2" 316L				
CH as above, with Fe0x and Mn0x, ~10% fine white sand. Basal Ferrelview Clay. SPT-8 13 CH Clay, high plasticity, ~15% fine to coarse angular sand and angular fine gravel with Mn0x and Fe0x, moist, hard, CH. Clay Till. CH as above, ~30% sand and fine gravel. CH as above, angular gravel up to 1", slickensided, weak red (2.5YR5/) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel imestone gravel fragments, mostly pale brown (10YR6/3), moist, hard, CH. Clay Till. CH as above, mostly yellowish red (5YR5/6) with weathered limestone gravel up to 1". SPT-IB SPT-IB SPT-IB SPT-IB SPT-IB CLAY, high plasticity, with weathered limestone fragments, Mn0x, mostly brownish yellow, moist, hard, CH. 826'; CH with weathered limestone fragments. MX-1 SPT-IB	-					СН	yellow (10YR6/6) and light gray	ed, mottled brownish (10YR7/1), moist,						
SPT-9 15						СН		Ox, ~10% fine white						l
CH as above, ~30% sand and fine gravel. CH as above, angular gravel up to 1", slickensided, weak red (2.5YR5/) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel fragments, mostly pale brown (10YR6/3), moist, hard, CH. Clay Till. CH as above, mostly yellowish red (5YR5/6) with weathered limestone gravel up to 1". SPT-I3 SPT-I3 SPT-I3 CLAY, high plasticity, with weathered limestone fragments, MnOx, mostly brownish yellow, moist, hard, CH. @ 26', CH with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments. High-Solids Bentonite Grout ("Grout-Well") High-Solids Bentonite Grout ("Grout-Well") Figure from 27.2' to 27.9', reddish brown (7.5YR6/8). Limestone is moderately weathered and moderately hard, minor oxidized pyrite, light gray. With minor charactery hard, minor oxidized pyrite, light gray. NX-1 SPT-I3 S		SPT-9		15		СН	 sand and angular fine gravel wi mottled brownish yellow and light 	th MnOx and FeOx,						
CH as above, angular gravel up to 1", slickensided, weak red (2.5YR5/) in tip of sampler shoe. CLAY, high plasticity, with angular weathered limestone gravel fragments, mostly pale brown (10YR6/3), moist, hard, CH. Clay Till. CH as above, mostly yellowish red (5YR5/6) with weathered limestone gravel up to 1". SPT-I3 SPT-I3 SPT-I4 SPT-I4 NX-1 33/60" CLAY, high plasticity, with weathered limestone fragments, MnOx, mostly brownish yellow, moist, hard, CH. @ 26", CH with weathered limestone fragments. CLAY, high plasticity, with weathered limestone fragments, MnOx, mostly brownish yellow, moist, hard, CH. @ 26", CH with weathered limestone fragments. SPT-I4 NX-1 33/60" NX-1 33/60" NX-2 SS/60" NX-2 SS/60" 37 SS/60" 37 SS/60" ANZ-2 SS/60" 37 SS/60" SSY-13 SSY-14 SS/60" SSY-13 SSY-14 SSY-15 S	4	SPT-IN		22	1		1	ne gravel.						1
ilimestone gravel fragments, mostly pale brown (I0YR6/3), moist, hard, CH. Clay Till. CH as above, mostly yellowish red (5YR5/6) with weathered limestone gravel up to 1". SPT-I3 23 CLAY, high plasticity, with weathered limestone fragments, MnOx, mostly brownish yellow, moist, hard, CH. @ 26', CH with weathered limestone fragments. NX-1 33/60" LIMESTONE AND CHERT, with high plasticity clay from 27.2' to 27.9', reddish brown (7.5YR6/8). Limestone is moderately weathered and moderately hard, minor oxidized pyrite, light gray. With minor chert. Weathered Burlington-Keokuk Limestone. @ 27.9'- 30.1'. Core loss is probably clay based on drill cuttings. @ 30.1'-30.5'. Limestone rubble. @ 30.5'. Lost circulation permanently. 31.4' 32.0'. Cherty limestone. @ 31.7'. Fractures are oxidized; possibly water	-					-	weak red (2.5YR5/) in tip of sa	mpler shoe.						
weathered limestone gravel up to 1". SPT-I3		SPT-11		55			limestone gravel fragments, mos	tly pale brown	. Oct -		•			
CLAY, high plasticity, with weathered limestone fragments, MnOx, mostly brownish yellow, moist, hard, CH. @ 26', CH with weathered limestone fragments. NX-1 33/60" 9	1													į
NX-1 33/60" 9							fragments, MnOx, mostly brownis	sh yellow, moist, hard,						
Limestone is moderately weathered and moderately hard, minor oxidized pyrite, light gray. With minor chert. Weathered Burlington-Keokuk Limestone. © 27.9'- 30.1'. Core loss is probably clay based on drill cuttings. © 30.1'-30.5'. Limestone rubble. © 30.5'. Lost circulation permanently. 31.4' 32.0'. Cherty limestone. © 31.7'. Fractures are oxidized; possibly water	$\frac{1}{1}$	li 1	∑ 3/60"	1			LIMESTONE AND CHERT, with h	igh plasticity clay						
drill cuttings. © 30.1'-30.5'. Limestone rubble. © 30.5'. Lost circulation permanently. 31.4' 32.0'. Cherty limestone. © 31.7'. Fractures are oxidized; possibly water							Limestone is moderately weathe hard, minor oxidized pyrite, ligh chert. Weathered Burlington-K	ered and moderately t gray. With minor eokuk Limestone.		Centrali	zer			
31.4' 32.0'. Cherty limestone. 31.7'. Fractures are oxidized; possibly water 6" Diameter	1	NX-2	\boxtimes	37			drill cuttings. @ 30.1'-30.5'. Limestone rubble	•	MDKW					
bearing at some time.	-	5	5/60"				31.4' 32.0'. Cherty limestone. @ 31.7'. Fractures are oxidized;	· .						

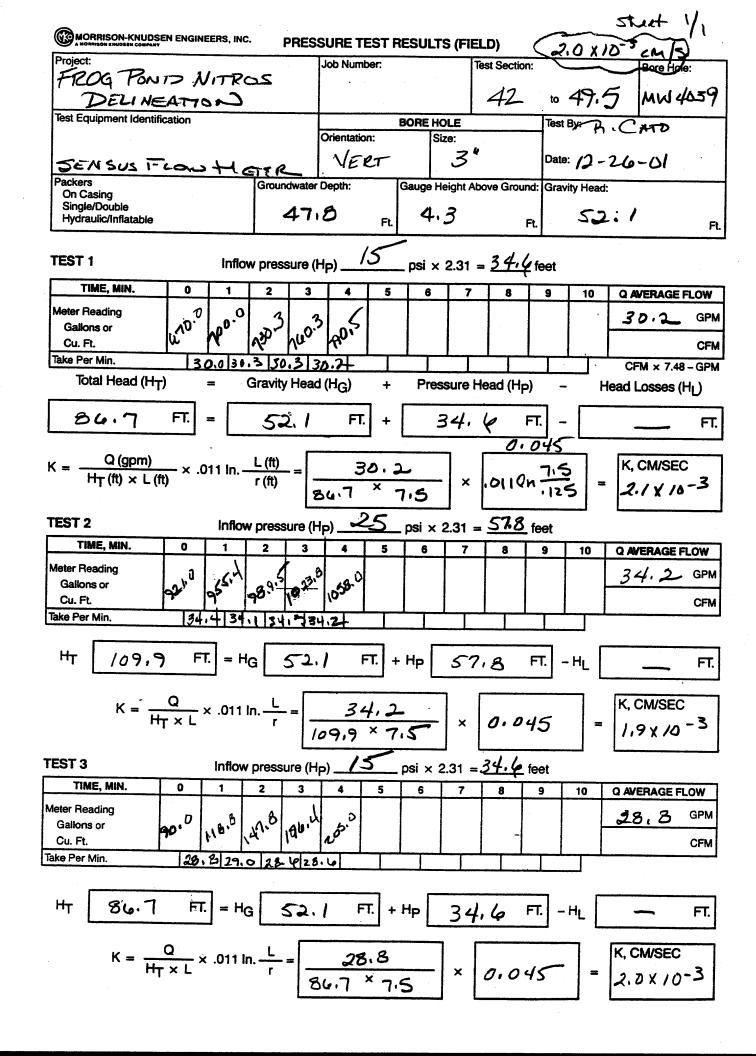


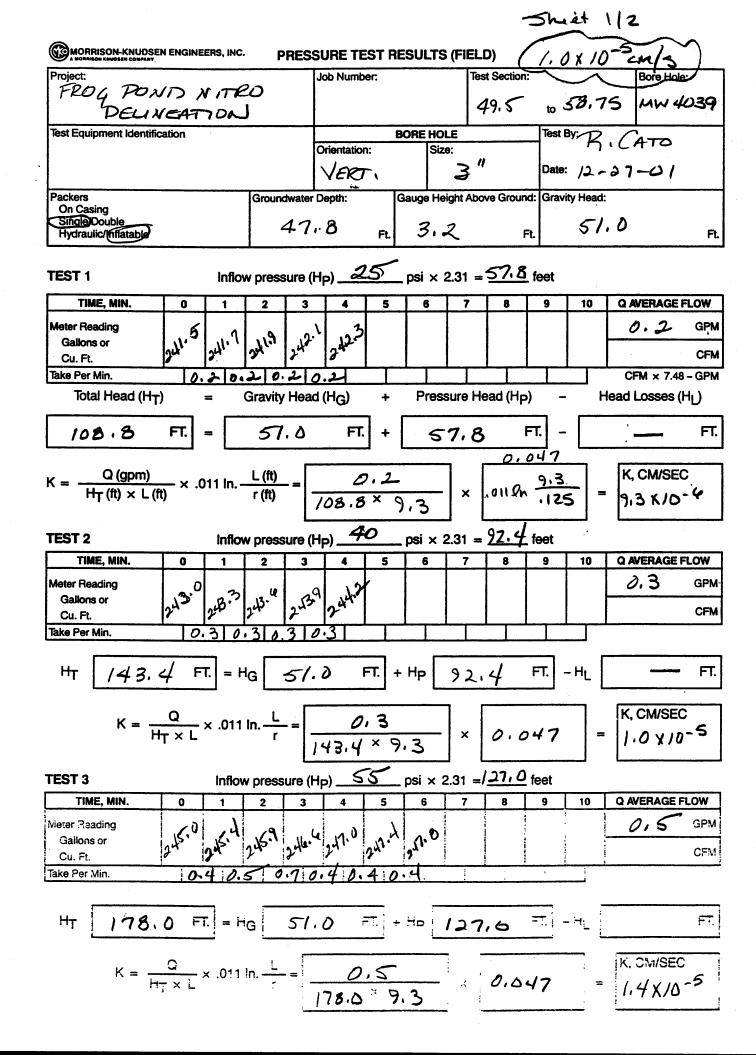
HOLE NUMBER WELDON SPRING SITE REMEDIAL ACTION PROJECT MW-4030 SHEET 2 OF 2 BOREHOLE AND WELL COMPLETION LOG NORTH (Y): 1043403.12 WELL STATUS/COMMENTS ACTIVE EAST (X): LOCATION 756457.20 NE OF DISPOSAL CELL, NEAR FROG POND F06 LEVATION feet SOIL/ROCK class Bg PERCENT Recovery S WELL DIAGRAM 函 SAMPLE/R Number SAMPLE DEPTH feet GRAPHIC ŏ STRAT DESCRIPTION AND REMARKS 딥 chert ims NX-2, 32.0'-37.0'. Limestone, moderately to strongly weathered, moderately hard, generally argillaceous, mostly yellow (2.5Y7/8), strongly weathered at 34.5' to 36.5', core is soft and eroded at 34.8' and 35.7'; ~40% chert, mostly white (2.5Y8/1), ~20+ fractures, mostly horizontal, all are NX-3 X I5/60" 22 605 rough, open, oxidized and locally eroded NX-3, 37.0'-42.0'. Core loss ~75%, recovered core 40 is strongly weathered limestone, orange brown, some solutioning, ~25% chert. Strongly Weathered Seal Burlington-Keokuk Limestone. 3/8" Enviroplug Bentonite Chips 26/60' NX-4, 42.0' to 47.0'. Strongly weathered and 600 vuggy limestone with soft zones that break with -finger pressure, mottled grayish orange (IOYR7/4) and grayish pink (5YR7/2), minor chert. 45 -Static Water Level @ 45.3 ft. NX-5 50/72 NX-5, 47.0' to 53.0'. Limestone, strongly weathered, fine-grained and argillaceous, grayish orange (10YR7/4), abundant horizontal fractures, 16 595 Centralizer open and rough, ~30% light gray chert. 50 Filterpack-20/40 Silica Sand @ 51.0'-51.9'. Less weathered, coarsely crystalline limestone. Weathered Burlington-Keokuk Limestone. Screen-590 2" (10 Slot) 316L SS @ 52.1'-53.0', Less weathered limestone with ~40% Continuous Wrap chert. Total cored depth, 53.0', 10-20-00. Hole reamed to 6" diameter to 56.0' and constructed a 2' 55 Bottom Cap Andmonitoring well. Total Well Depth 55.2-ft. 6" Hole To-585 56.0-ft. CONSTANT HEAD SINGLE PACKER TEST RESULTS 35.0 - 45.0 ft. K= 1.0E-3 cm/sec 45.0 - 53.0 ft. K= 6.0E-5 cm/sec 60 580-65 575 70 570

Project:		·····			Job Num			S (FIEL	est Section	:		Ti	Bore Hol	٥٠
											•			
Total Construction of the	- 4.								35.0	to	45.	Van	HO 3	<i></i>
Test Equipment Identific Neptune Flow	ation 4 Met	ler-1	111	- 1	Orientatio		BORE H		•	Test	By:	Uan	Bei	r fer
U.S. Gauge	>			ſ	Vert	/ /	ľ	120. 2 ~ ^t	,	Dot	a•	,	,	
,								2.0		Dan	10/	24/	00	134
Packers On Casing			Groun	dwater {	Depth:	ľ	Gauge F	leight Ab	ove Groun	d: Gra	vity Head	ニファ"	+3	5'
Single Double Hydraulic (Inflatable)			4	15'		Ft.	1.7	•		. l			, <u> </u>	
			<u> </u>										/ 4	Ft
TEST 1		Inflo	w pres	sure (H	lp) <u>C</u>)	_psi ×	2.31 =	:	feet	pre	d no	tal	evel.
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AV	ERAGE	FLOW
Meter Reading					1							1	2.5	GPM
Gallons or Cu. Ft.					1									CFM
Take Per Min.	12	5		1	1		'	1	4		 	CFN	1 × 7.48	
Total Head (H _T)		=	Gravity	Head	(H _G)	+	Pres	ssure H	ead (Hp) -	 -	Head Lo		
		Г				7	<u> </u>						- (
	FT.	= [_			FT.	+			F	₹T.] -	-			FT.
O (cmm)			1 (6)	_				7				<u> </u>		
$\frac{Q (gpm)}{H_T (ft) \times L (ft)}$	o. × –)11 ln	L (ft)	-= _							1	K, C	M/SEC	2
77 (ii) × E(ii)	,		1 (11)			×		`				1	X/Ö	<u>- ></u>
EST 2			<u> </u>		P)		, 	·	· · · · · ·	feet			************	
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVE	RAGE	LOW
Meter Reading Gallons or							1							GPM
Cu. Ft.														CFM
ake Per Min.														· · · · · · · · · · · · · · · · · · ·
4		7					Г			\Box	г			
HŢ	Г	г. = Н	G			<u>-</u> T.	НР			FT.	- HL			FT.
	0		,	Г			·					<u> </u>	MOF	
K =	''' :	× .011	ln. — L	·= _			<u>:</u>	×			_	- 1	M/SEC	,
• • • • • • • • • • • • • • • • • • • •			•			×		^			-			
EST 3		Inflow	pressi	ure (H _F	o)	······	psi × :	_		feet		L		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVE	RAGE F	LOW
leter Reading	.				1	i								GPM:
Gallons or Cu. Ft.	. [1											
cu. Ft.			-	\dashv	1	T	L.,	لــــا						CFM
	<u> </u>	1		I	:									
		_								_	_	 		
нт Г	£T		~ 1		E	T .	<u>u_ l</u>		1	 1	<u>.</u> 1	-		اجم
нт	FI	= H	G	• .	F	न. +	HP			- T.] -	- H _L	•		FT.
H _T		ا ا	L		F	न. +	Hp		-	-T.] -	- H∟	K C	M/SEC	


MORRISON-KNUDSE A MORRISON KNUDSEN COMPANY	EN ENGIN	EERS, INC	;.	PRESS	URE T	EST R	ESULTS	S (FIEL	.D)					
Project:			-	J	lob Num	ber:		Te	st Sectio				lore Hok	
									45	to	53	,	W).	30
Test Equipment Identific	cation						ORE HO			Test	Ву:		•	
				ľ	Orientati	on:	Siz	ze:		Date	э :			
Packers			Groun	dwater D	epth:	10	Gauge He	eiaht Abo	ove Grou	nd: Grav	vity Head	l:		·
On Casing Single/Double Hydraulic/Inflatable						Ft.	•			Ft.	•			Ft
тевт Х4		Inflo	w pres	sure (H	P) 2	645	psi x	2.31 =	103.7	5 _{feet}				
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVE	RAGE	LOW
Meter Reading	1	11-0	1			,		١.					41	GPM
Gallons or Cu. Ft.	9.5	10°	125	13.9	15.	14.6	18.0	19.4					**	CFM
Take Per Min.		.5 1.	51	411	.311	.41	411	4				CFM	× 7.48	- GPM
Total Head (H _T)	=	Gravity	Hèad	(H _G)	+	Pres	sure H	ead (H _F	o) -	- l	Head Lo	sses (l	ا ل
154.9	FT.	=	53	<u> </u>	FI	:	10	13.9	7	FT	• [•	FT.
Q (gpm)	v (0111n	L (ft)	_		. 4.1	·] [K, C	M/SEC	;
$K = \frac{Q (gpm)}{H_T (ft) \times L (ft)}$	<u> </u>	J I I III	r (ft)	-= -	54.9	×E	}	×	.0	158	=	51	M/SEC	5
TEST 2							psi x 2	•		_ feet		<u> </u>		
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVE	RAGE F	LOW
Meter Reading Gallons or														GPM
Cu. Ft.													_	CFM
Take Per Min.	1					Щ_		_1_						
Нт	F	T. = +	lg			FT. +	НР			FI.	- н∟			FT.
) r			· •			
K = H	T×L	× .011	In. L	-	····	×	·	×			_		W/SEC	-
	•			· L		×								
TEST 3		Inflov	v press	ure (H _F	o)		psi × 2	2.31 =		feet			· · · · · ·	•
TIME, MIN.	0	1	2	3	4	5	6	7	8	9	10	Q AVE	RAGE FI	LOW
Meter Reading Gallons or														GРM
Cu. Ft.												·		CFM
fake Per Min.													· · · · · · · · · · · · · · · · · · ·	
НТ	FI	Г.	G		ı	FT. +	НР.			FT	-HL			FT.
							·	<u> </u>			`	[K 0	NOTO	
$K = \frac{1}{H_1}$	α Γ× L	× .011	ln. L			×		×			=	IK, CA	//SEC	
						^					- [


		W	IELC	ON	SP	RIN	IG SITE REMEDIAL ACTION	I PROJECT			HOLE NUMBER	MW-40)39
		•	В	ORE	EHO	DLE	AND WELL COMPLETION	N LOG		J-90 I	SHEET 1 OF 2		
WELL S	TAT	n 1570					LLOCATION			*S	EAST (X):	104353	
ACT	IVI	Ε					N. ARMY PROP., W. OF DRILL RIG MAKE & MODE	L			TOC ELEVATION	75664	
	ΝE	WES1	TERN	Inc.			CME-750 HSA/NGWL	; I-R TH-60 AIR BOTTOM OF HOLE	ROT (TD)	ARY	GROUND ELEV	ATTON	8.95 6.40
DRILL	FL	JIDS (NQ-6	ITIVE	S" AIF	₹-62	CASING TYPE, DEPTH, SIZE	64.9 BEDROCK			STICKUP	04	2.55
Wat	er	RT	Air re				DATE FINISH	36.3 MATER LEVELS & ∇ ▼	DATE	S	HYDR CONDUC	TIVITY (cm	
			-14-0		O		LITTHOLOGY BY	¥ ¥	느				z
프	LE	/RUI	EN1	or RGD	8 10	Š	BECKY CATO		TIND .		WELL DIAGRA	\M	ATIO
DEPTH feet	SAMF	SAMPLE/RUN Number	PERCENT Recovery	N# 0r	GRAPHIC LOG	SOIL/ROCK	DESCRIPTION AND REMARK	KS	STRAT.			#	ELEVATION
_			0 100	-			-		1	Protecti Casing (Locking	with		645-
-			-				The overburden soil was not sampled or the surface to 35.0-ft.	logged from		2-ft. Dia Concret	ameter e Pad With ctive Posts		
-													
J							-						640-
- -			-			6		•					
10-													
-			.+1				-			Well Cas	sing————————————————————————————————————	-	635
-			•				-			Steel			
15-			·						diff.	•			630
. -									5				630
-									- Oct/Ofc				
20-										~9" Dia Borehol			625
-													
25-							-						
													620
-													
30-			-				_			High-S Grout	olids Bentonite- ("Grout-Well")		
_													615
-													
35-	╢	SPT-1		-33	-	СН	/	•					


HOLE NUMBER WELDON SPRING SITE REMEDIAL ACTION PROJECT MW-4039 SHEET 2 OF 2 BOREHOLE AND WELL COMPLETION LOG NORTH (Y): 1043537.83 WELL STATUS/COMMENTS LOCATION EAST (X): ACTIVE N. ARMY PROP., W. OF CO. ROAD MAINT, YARD 756647.70 SAMPLE/RUN Number GRAPHIC LOG ELEVATION feet SOIL/ROCK class Rad PERCENT Recovery S WELL DIAGRAM DEPTH feet ŏ DESCRIPTION AND REMARKS S CH ם CLAY, high plasticity, with gravel, yellowish red (5YR5/6), hard, CH. Residuum. 610 CHRI CHERT AND LIMESTONE, broken. @ 38.0'. LIMESTONE, weathered, with brecciated SPT-2 NQ-1 36/66" chert, orange gray. Auger refusal at 38.5-ft. Continued with NQ core. 40 LIMESTONE, moderately weathered, orange tan, with ~30% chert as nodules and beds, some brecciated. One to 3 fractures per foot, full water 605circulation. Weathered Burlington-Keokuk Limestone. NQ-2 42/66' CHERT, with brecciated zones, increasing with depth, ~20% limestone, moderately weathered, vuggy at 45.2'. 5+ fractures per foot, some 25 3/8" Enviroplug 45 Bentonite Chips rubbled zones. 600 @ ${\sim}46.2'{-}\sim{}49.0'.$ Sporatic fluid circulation. Bit dropped at ${\sim}46.2'$ to ${\sim}46.5'.$ ---Static Water Level @ 47.9 ft. @ ~49.0'. Lost circulation permanently. 6" Diameter NQ-3 LIMESTONE, slightly weathered, argillaceous, gray 50-112/112 Borehole to tan. One to 6 fractures per foot. Weathered Burlington-Keokuk Limestone. 595 Centralizer 55 2" (10 Slot) 316L SS Continuous Wrap 590 Filterpack-@ 58.5'- 58.8'. Strongly weathered limestone, some 10/20 Silica Sand styolites, orange tan, with brecciated chert. X 4√0" 64/64 NQ-5 60 @ 59.6'- 64,9'. LIMESTONE AND CHERT, ~50% each, limestone is moderately weathered, argillaceous, orange tan, with zones and thin beds of chert. Shale seams at 60.7-ft. Weathered 585 Centralizer Burlington-Keokuk Limestone. Bottom Cap And-Total Well Depth 62.2-ft. 65 3" Hole To-Total cored depth 64.9'. Hole reamed to 6" diameter to 62.3' and a 2" monitoring well was 64.9-ft. constructed. 580 CONSTANT HEAD SINGLE PACKER TEST RESULTS 42.0 - 49.5-ft. K = 2.0E-3 cm/sec 49.5 - 58.8-ft. K = 1.0E-5 cm/sec 70 575


Carrier Color Color Control Color Color Color Color Color Color Color Color Color Color Color Color Color Color

MONITORING WELL DEVELOPMENT FORM

PROJECT NAME	WSSPAP	WORK PACKAGE NO. 487 A
DEVELOPED BY	MARK MCHAMAKA	CHECKED BY MARK ACRAMARA SHEET 2 OF 2
1. Well No.:	MU4039	Well Locations: Behind Huy. Dept.

Date/ Time	Hrs. Dev./ Cum. Hrs. Dev.	Gals. Purged/ Cum. Gals. Purged	pН	Temp.	Cond.	Turb,	Remarks
	7/22	26	6.4	7.2	0.67	R/A	
103	8'38	37	6.7	12.6	0.63	7.00	
103	3:47	27.5	6.6	12.7	0.64	1,00	
1/03	\$1.53	JR, O	i.6	14.1	0.63	2.00	
1/03	8:58	3,5	6.6	14.3	1.64	1,00	
1/03	9:10	J9.0	6.6	15.	164	0:00	
103	9:20	30.0	6.60	15.3	,64	0.00	
							į
		,					

APPENDIX B

Analytical Data

0
2
7
_
'n
ŏ
Ø
\mathbf{a}

r Investigation
Groundwate
rog Pond (
ort for the Fi
npletion Repo
င်

2 TRO 1/60		ng/L
LAB_QUALIFIERS U	כככככככככ ככככככככ	⊃
DETECTION_LIMIT 0.015 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04	0.09 0.09 0.09 0.09 0.09 0.03 0.03 0.03	0.08
RESULT ND ND 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.25 0.37 0.37 0.00 0.00 0.00 0.00 0.00 0.00	2
DATE_SAMPLED 12/5/2000 1/18/2001 3/27/2001 5/23/2001 7/5/2001 12/5/2001 1/22/2002 3/13/2002 5/28/2002 5/28/2002 5/28/2002 5/24/2003 5/11/2003 8/14/2003	12/5/2000 1/18/2001 3/27/2001 5/23/2001 10/9/2001 12/5/2001 1/22/2002 3/13/2002 5/28/2002 7/2/2002 9/11/2002 11/11/2002 2/4/2003 5/1/2003 12/5/2001 1/18/2001 1/18/2001 1/18/2001 1/5/2001 1/5/2001 1/5/2001	3/13/2002
ANALYTE 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene	1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 1,3-Dinitrobenzene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene

MW-2006 MW-2006 MW-2006

MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006

MW-2006 MW-2006

MW-2006 MW-2006

MW-2006 MW-2006 MW-2006

MW-2006 MW-2006 MW-2006 MW-2006 MW-2006

LOCATION MW-2006 MW-2006

MW-2006 MW-2006

MW-2006

MW-2006 MW-2006 MW-2006 MW-2006

MW-2006 MW-2006

MW-2006 MW-2006

MW-2006 MW-2006 MW-2006 MW-2006

ug/L ug/L Analytical Data - Nitroaromatic Compounds
ug/L ug/L Analyti

0.06

0.01 90.0

0.01

0.06 0.06 0.06 0.06

8 €.5

10/9/2001 12/5/2001

7/5/2001

90.0 0.06 90.0

11/11/2002

2/4/2003 5/1/2003 8/14/2003 12/5/2000 1/18/2001 3/27/2001 5/23/2001

9/11/2002

2,4-Dinitrotoluene

2,4-Dinitrotoluene 2,4-Dinitrotoluene

2,4-Dinitrotoluene

2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene

MW-2006 MW-2006 MW-2006 **JW-2006 MW-2006 MW-2006** MW-2006 **MW-2006 MW-2006 MW-2006**

7/2/2002

0.04 0.04 90.0

12/5/2001 1/22/2002 3/13/2002 5/28/2002

10/9/2001

7/5/2001

2,4-Dinitrotoluene

2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene

MW-2006

MW-2006

MW-2006 MW-2006 MW-2006 **MW-2006 MW-2006**

0.04 0.04 0.04

DATE_SAMPLED RESULT DETECTION_LIMIT LAB_QUALIFIERS UNITS

0.08

11/11/2002

2/4/2003 5/1/2003 8/14/2003 12/5/2000 1/18/2001 3/27/2001 5/23/2001

2,4-Dinitrotoluene

2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene

9/11/2002

5/28/2002

7/2/2002

2.4.6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene

2,4,6-Trinitrotoluene

ANALYTE

LOCATION

MW-2006

MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 **MW-2006** MW-2006 MW-2006

0.08 0.08 0.08 0.03 0.13 0.13

9

3/14/2003

2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene

MW-2006 **MW-2006**

MW-2006

0.85 1.3

11/11/2002

2,6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2,6-Dinitrotoluene

MW-2006 MW-2006 MW-2006

MW-2006

2/4/2003 5/1/2003

9/11/2002

7/2/2002

2,6-Dinitrotoluene

2,6-Dinitrotoluene 2,6-Dinitrotoluene

2,6-Dinitrotoluene

MW-2006 MW-2006 MW-2006

일

4. 4. 7.

1/22/2002 3/13/2002 5/28/2002

2.6-Dinitrotoluene 2,6-Dinitrotoluene

S
힏
⋤
Ž
ă
F
ō
Õ
Ö
ž
ത്ര
₻
2
ā
9
慧
_
7
Jata - N

2007 1/60	7,6n ng/L ng/L ng/L ng/L ng/L
	,,,,,,,,
DETECTION_LIMIT 0.05 0.05 0.05 0.03 0.03 0.07 0.07 0.07 0.03 0.03 0.03	8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
RESULT 1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2 2 2 2 2 2 2 2 6 2
DATE_SAMPLED 2/4/2003 5/1/2003 8/14/2003 1/22/2002 3/13/2002 2/4/2003 8/14/2003 1/22/2002 3/13/2002 2/4/2003 8/14/2003 1/22/2002 3/13/2002 2/4/2003 8/14/2003 1/22/2002 3/13/2002 2/4/2003 8/14/2003 1/22/2002 3/13/2001 1/18/2001 1/18/2001 1/18/2001 1/18/2001 1/18/2001 1/18/2001 1/18/2001 1/18/2001	5/28/2002 7/2/2002 9/11/2002 11/11/2002 2/4/2003 5/1/2003 12/5/2000 1/18/2001
ANALYTE 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 6-Nitrobenzene Nitrobenzene	Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene 1,3,5-Trinitrobenzene
LOCATION MW-2006	MW-2006 MW-2006 MW-2006 MW-2006 MW-2006 MW-2012 MW-2012

197 197 197 197 197 197	1,01 1,01 1,01 1,01 1,01 1,01 1,01	7,6n 1,6n 1,6n 1,6n 1,6n 1,6n	1,6n 1,0n 1,0n 1,0n 1,0n 1,0n 1,0n 1,0n 1,0	Analytical Data - Nitroaromatic Comp
	د د ۵ ۵ ۵ ۵ ۵))	⊃ .	

1.3 9 9. 4.

11/11/2002

3-Dinitrobenzene 3-Dinitrobenzene

MW-2012 MW-2012

MW-2012

1/27/2003 1/27/2003

2/4/2003 5/1/2003

,3-Dinitrobenzene

,3-Dinitrobenzene ,3-Dinitrobenzene

MW-2012 **MW-2012** MW-2012 **MW-2012** MW-2012 MW-2012 MW-2012

MW-2012

,3-Dinitrobenzene

MW-2012

9/16/2002

7/2/2002

3-Dinitrobenzene ,3-Dinitrobenzene 3-Dinitrobenzene

MW-2012

0.38 0.84 0.54

1/21/2002 3/13/2002 5/28/2002

8/22/2001 10/9/2001 12/5/2001

> 3-Dinitrobenzene 3-Dinitrobenzene 3-Dinitrobenzene 3-Dinitrobenzene

MW-2012 MW-2012 MW-2012 **MW-2012** MW-2012

MW-2012

7/5/2001

0.05 0.05 0.05

8

12/5/2000

2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene

1/18/2001 3/15/2001 5/22/2001

2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene

3/19/2003

0.09 18 0.09 0.09

O

0.04 1.2 1.2 2.4 2

190 230 240 280 300 330 330 330 0.09 18 0.21 18 ND ND ND 1.1

8/19/2003 12/5/2000 1/18/2001 3/15/2001 5/22/2001

3,5-Trinitrobenzene

3-Dinitrobenzene

3-Dinitrobenzene 3-Dinitrobenzene 3-Dinitrobenzene 3-Dinitrobenzene 3-Dinitrobenzene

> MW-2012 MW-2012

2/4/2003 5/1/2003

,3,5-Trinitrobenzene ,3,5-Trinitrobenzene

0.68

11/11/2002

1/27/2003 1/27/2003

9/16/2002

,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene

7/2/2002

3/13/2002 5/28/2002

10/9/2001 12/5/2001 1/21/2002

8/22/2001

,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene

7/5/2001

DATE_SAMPLED RESULT DETECTION_LIMIT LAB_QUALIFIERS UNITS

3/15/2001 5/22/2001

1,3,5-Trinitrobenzene

ANALYTE

OCATION

MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 **MW-2012** MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012

,3,5-Trinitrobenzene ,3,5-Trinitrobenzene

ng/L ng/L ug/L ug/L

UNITS	۳۵/۲ ۱۱۵/۱	1/0/L	na/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/L	ng/L	na/L	ng/L	ug/L	ug/L	ng/L	ug/L	ng/L	na/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	na/L	na/L	ng/L	na/L	na/L	na/L	ng/L						
LAB_QUALIFIERS									۵	۵	۵	۵	۵															۵	۵	۵	۵	۵								
DETECTION_LIMIT LAB_QUALIFIERS	0.75	9:0	48	16	2.4	40	1.4	0.08	2	1.9	2.4	2.4	2	9	9	4	4	4	4	4	ω	12	12	12	30	_	90.0	1.5	1.4	1.8	1.8	1.5	2	2	9	9	ဖ	9	9	12
RESULT 1	129	180	270	220	230	180	260	290	280	260	310	280	250	730	099	730	920	170	840	880	950	1600	1200	1500	1100	1500	940	1600	1300	1800	1500	1500	069	610	650	800	260	640	710	800
DATE_SAMPLED	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/16/2002	11/11/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	12/5/2000	1/18/2001	3/15/2001	5/22/2001	7/5/2001	8/22/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/16/2002	11/11/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	12/5/2000	1/18/2001	3/15/2001	5/22/2001	7/5/2001	8/22/2001	10/9/2001	12/5/2001
ANALYTE 2.4.6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene																									
LOCATION MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012																	MW-2012		MW-2012					MW-2012		MW-2012	MW-2012								

UNITS ug/L	ng/L ng/L	ug/L	ng/L	ng/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ug/L	ug/L	ug/L	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L
LAB_QUALIFIERS					۵	Δ	Ω	۵	Δ	7									۵	۵	Ω	Δ	Δ			۵	۵	۵	۵	۵	⊃	⊃)	D					
DETECTION_LIMIT 18	2 2	20	1.7	0.1	2.5	2.4	က	3.9	3.2	48	0.03	0.03	0.03	0.05	0.05	0.05	တ	ဖ	0.75	0.72	2.1	3.3	2.8	48	9.0	0.75	0.72	2.1	2.1	4.8	0.03	0.03	0.03	0.03	0.07	0.07	0.02	တ	9
1300	1100	820	1100	1200	1200	1100	1300	1300	1200	7	5.8	4	4	4	17	16	2300	1500	2100	2000	2300	2000	1900	140	110	160	150	160	140	140	2	2	2	2	12	13	12	200	470
DATE_SAMPLED 1/21/2002 3/13/2002	5/28/2002	7/2/2002	9/16/2002	11/11/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	1/21/2002	3/13/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	1/21/2002	3/13/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	1/21/2002	3/13/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	1/21/2002	3/13/2002	1/27/2003	1/27/2003	2/4/2003	5/1/2003	8/19/2003	1/21/2002	3/13/2002
ANALYTE 2,6-Dinitrotoluene 2 6-Dinitrotoluene	2,6-Dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Nitrotoluene	3-Nitrotoluene	4-Amino-2,6-dinitrotoluene	4-Nitrotoluene	4-Nitrotoluene																																
LOCATION MW-2012 MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012	MW-2012									

	ng/L
LAB_QUALIFIERS OU OU OU OU OU OU OU OU OU OU OU OU OU O	Ď
DETECTION_LIMIT 0.75 1.2 1.2 1.2 0.03 0.03 0.03 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.06 0.09	0.00
RESULT 330 430 430 430 430 430 430 430 430 430	2
DATE_SAMPLED 1/27/2003 1/27/2003 2/4/2003 2/4/2003 8/19/2003 1/1/8/2001 1/1/8/2001 3/15/2001 1/2/2002 3/15/2001 1/27/2002 3/13/2002 1/2/2002 1/2/2002 1/2/2002 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 1/27/2003 2/4/2002 3/15/2001 1/19/2001 1/21/2002 3/14/2002 2/5/2003 8/14/2002 2/5/2003 8/18/2003 1/2/2003	1/19/2001
ANALYTE 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 6-Nitrobenzene 6-Nitrobenzene 7-Nitrobenzene	1,3-Dinitrobenzene
LOCATION MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2012 MW-2013	MW-2013

matic Compounds
ata - Nitroaro
Analytical Da

UNITS	ng/L	na/l	/c) 1	J /o	1/6: 1/2:	ug/L	ug/L	ug/L	ug/L	ug/L "	ug/L "	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L "	ug/L	ug/L	ug/L ::=/l	ug/L	1,00 1,01	. ug/r	ug/L	ng/L	ug/L	ug/L	ug/L "	ug/L	ng/L	ng/L	ng/L
LAB_QUALIFIERS	⊃	_	П	=)	=	o =	>))	=	> -	7 =	5	Ξ	5			Ξ	> =	D		=	o	Ξ	>							Ξ	o				Ξ) :	Þ		
LIMIT	60.0	0.09	0.09	0.09	0.0	60 0	60.0	60.0	60.0	60.0	0.09	0.03	0.05	0.00	0.00	0.00	90. 00. 00.	0.00	0.00	0.00	0.00	80.0	80.0	80.0	80.0	80.0	00.0	0.00	000	0.03	0.04	0.04	0.04	0.04	70.0	0.0	90.0	90.0	90.0	90.0	90.0	?
RESULT	2 :	2	9	Q	0.23	Q	S	S	Š	0.0	? ? ?	0.024	S	0.25	S	0.14	0.35	0.25	2	2	0.34	0.35	2	0.16	Q	<u>-</u>	- T	96.0	0.059	0.048	0.24	0.081	Q	0.089	0.36	0.095	0.15	Š	Ē	660.0	0.15) · ·
DATE_SAMPLED	3/15/2001	2/22/2001	7/5/2001	10/9/2001	12/5/2001	1/21/2002	3/14/2002	5/28/2002	8/14/2002	11/11/2002	2/5/2003	5/12/2003	8/18/2003	12/12/2000	1/19/2001	3/15/2001	5/22/2001	7/5/2001	10/9/2001	12/5/2001	1/21/2002	3/14/2002	5/28/2002	8/14/2002	11/11/2002	2/5/2003	5/12/2003	8/18/2003	12/12/2000	1/19/2001	3/15/2001	5/22/2001	7/5/2001	10/9/2001	12/5/2001	1/21/2002	3/14/2002	5/28/2002	8/14/2002	11/11/2002	2/5/2003	
ANALYTE	13-Dinitrobenzono		1,3-Unitrobenzene	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene																						
LOCATION MW-2013	MW-2013	MW.2013	MAY 2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013	MW-2013							MW-2013											

Compounds	
Nitroaromatic	
sal Data -	
Analytic	

STIND STIND 1/60	ng/L ng/L ng/L ng/L ng/L ng/L ng/L
LAB_QUALIFIERS U U U	cccc
DETECTION LIMIT 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.13 0.13 0.03 0.03 0.03 0.03 0.03 0.03	0.03 0.07 0.07 0.03 0.03 0.03 0.03
RESULT 0.15 0.15 0.15 0.15 0.054 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89	ON ON ON ON ON ON ON ON ON ON ON ON ON O
DATE_SAMPLED 5/12/2003 8/18/2003 12/12/2000 1/19/2001 3/15/2001 5/22/2001 1/21/2002 3/14/2002 8/14/2002 11/11/2002 2/5/2003 5/12/2003 8/18/2003 1/21/2002 3/14/2002 2/5/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003 8/18/2003	1/21/2002 3/14/2002 2/5/2003 5/12/2003 8/18/2002 3/14/2002 2/5/2003 5/12/2003 8/18/2003 3/14/2002 2/5/2003 5/12/2003
ANALYTE 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene
LOCATION MW-2013	MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013

STIND 1/80	7/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1
LAB_QUALIFIERS U U U U U U U U U U U U U U U	2222222
DETECTION LIMIT 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.08 0.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.5.8.3.2.4.9 2.5.8.9.0 2.0.0 3.5.0 3.0.0 5.0.0
BATE_SAMPLED 8/18/2003 12/12/2000 1/19/2001 3/15/2001 5/22/2001 7/5/2001 10/9/2001 11/21/2002 3/14/2002 5/28/2002 8/14/2002 1/21/2002 11/11/2002 2/5/2003 5/12/2003 5/12/2003 12/5/2001 1/24/2001 3/15/2001 1/24/2001 1/24/2001 1/24/2001 1/25/2001 1/25/2001 1/25/2001	5/29/2002 8/15/2002 11/12/2002 2/10/2003 5/12/2003 12/5/2000 1/24/2001 3/15/2001 7/5/2001 10/9/2001 1/22/2002 3/13/2002
ANALYTE 4-Nitrotoluene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene 1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene
LOCATION MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2013 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014	MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014

_
0
20
-
0
_
$\overline{}$
~
age
0
ā
Δ

Investigation
Groundwater I
Frog Pond
eport for the Frog Pond (
Completion Re

)	ng/L	ng/L	ng/L	ng/L	na/L	na/L	na/L	na/L	ng/L	i _/c	 	ng/L	ng/L	na/L	ng/L g/L	ng/L	ng/L	ug/L	ug/Ľ	ug/L	ng/L	ug/L	ng/L	ug/L	ng/L																
	LAB_QUALIFIEKS	> :	⊃				>	>	-))	· =	· ⊃	· ⊃	•	¬	>	⊃	· ⊃)	>						-																
TIMIT NOTECTION		90.0	0.09	0.05	0.05	0.05	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	90.0	90:0	90:0	90:0	90.0	90.0	90.0	0.01	0.01	90.0	90:0	90.0	90.0
7 1 1 1 1		2 :		0.055	690.0	90.0	2	Q	Q	Q	Q	Q	Q	0.25	Q	Q	Q	2	Q	S	Ω	0.11	0.058	0.07	0.089	Q	0.11	0.11	0.14	0.12	0.098	0.12	0.15	0.14	0.11	0.34	0.27	0.34	0.28	0.34	0.21	0.44
DATE SAMPLED	DAIE SAMPLED	9/13/2002	11/12/2002	2/10/2003	5/12/2003	8/19/2003	12/5/2000	1/24/2001	3/15/2001	5/23/2001	7/5/2001	10/9/2001	12/5/2001	1/22/2002	3/13/2002	5/29/2002	8/15/2002	11/12/2002	2/10/2003	5/12/2003	8/19/2003	12/5/2000	1/24/2001	3/15/2001	5/23/2001	7/5/2001	10/9/2001	12/5/2001	1/22/2002	3/13/2002	5/29/2002	8/15/2002	11/12/2002	2/10/2003	5/12/2003	8/19/2003	12/5/2000	1/24/2001	3/15/2001	5/23/2001	7/5/2001	10/9/2001
ANA! VTE	1 3-Dinitrohenzene	1,0-Dinitionalization	1, 3-Uinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene														

MW-2014

MW-2014 MW-2014

MW-2014 MW-2014 MW-2014

LOCATION MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014 MW-2014

S T	1,6n 1,6n 1,6n 1,6n
LAB_QUALIFIERS U U U U U U U	
DETECTION LIMIT 0.06 0.06 0.11 0.13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.07	0.03 0.03 0.03 0.03
ND ND ND ND ND ND ND ND ND ND ND ND ND N	4. O O O O O
DATE_SAMPLED 12/5/2001 1/22/2002 3/13/2002 3/13/2002 8/15/2002 8/15/2002 2/10/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 8/19/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 8/19/2003 1/22/2002 3/13/2002 2/10/2003 8/19/2003 1/22/2003	1/24/2001 3/15/2001 5/23/2001 7/5/2001 10/9/2001
2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene	Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene
LOCATION MW-2014	MW-2014 MW-2014 MW-2014 MW-2014 MW-2014

-	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/L	na/L	na/L	na/L	na/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	na/L	ng/L	ng/L	ng/L	ng/L	na/L	ng/L	na/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L							
LAB_QUALIFIERS U	:	-	⊃	⊃	⊃	⊃	-																	-	¬	>	¬	¬)	-	-	· ⊃	_	ɔ	ח		
DETECTION_LIMIT	0.08	80.0	0.08	0.08	0.08	90:0	0.08	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.08	90.0	60.0	60.0	0.09	60.0	60.0	60.0	0.0	60.0	60.0	0.0	0.09	0.09	0.05	0.05	0.05	0.03	0.03	0.03
5	0.93	2	2	2	2	Q.	2	0.13	1.9	2.3	1.4	1:1	1.5	0.76	2.7	1.3	1.9	1.6	5.6	5.2	5.1	6.5	Q	2	2	2	2	2	0.1	Q	2	Ω	2	2	2	2	2	2	0.57	0.64
DATE_SAMPLED 1/22/2002	3/13/2002	2002/62/6	8/15/2002	11/12/2002	2/10/2003	5/12/2003	8/19/2003	12/5/2000	1/19/2001	3/26/2001	5/22/2001	7/6/2001	10/22/2001	12/5/2001	1/22/2002	3/14/2002	5/30/2002	8/21/2002	11/19/2002	2/11/2003	5/14/2003	8/19/2003	12/5/2000	1/19/2001	3/26/2001	5/22/2001	7/6/2001	10/22/2001	12/5/2001	1/22/2002	3/14/2002	5/30/2002	8/21/2002	11/19/2002	2/11/2003	5/14/2003	8/19/2003	12/5/2000	1/19/2001	3/26/2001
ANALYTE Nitrobenzene	Nitrobenzene	NILI ODELIZEDE	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene																												
LOCATION MW-2014	MW-2014	MIVV-2014	MW-2014	MW-2014	MW-2014	MW-2014	MW-2014	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033

spunodu
c Cor
Vitroaromati
Data - N
Analytical

UNITS	ug/L	ק"ר	4g/L	7 /C	ug/L	ug/L ::a/'	ug/L ∵.″	ug/L	ug/L	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ug/L "	ug/L	ng/L "	ng/L	ug/L "	ug/L	ug/L	ug/L	ug/L	ng/L	ng/L	ug/L "	ng/L	ug/L	ug/∟ ∷a,"	ug/L	ug/∟ ∷≓/'	ug/L	ug/L "	ug/L "	ug/L "	ug/L	ug/L 	ug/L "	ng/L ug/L
LAB_QUALIFIERS	=)										Ξ)	5		Ξ	>	>		Ξ	> =	> =	> =	Þ							Ξ	o								
DETECTION_LIMIT LAB_QUALIFIERS	0.03	0.03	0.03	0.03	0.08	0.08	0.08	80.0	80.0	80.0	80.0	0.00	0.00	0.04	500	5 6	5 6	5 6	t 50.0	0.0 4	90.0	90.0	90.0	90.0	90.0	9.0	9.0	0.0	900	90.0	90.0	90.0	0.06	90.0						0.13
RESULT 0.58	QN	0.3	0.58	0.61	0.18	0.3	0.4	0.52	0.86	<u> </u>	0.86	S	2	0.06	0.052	S	Ē	0.067	0 11	S	2	2	Ę	0.93	1	0.57	0.16	0.59	0.88	0.85	2	0.78	66.0	1.2	0.49	0.76	,		1.4	3.3
DATE_SAMPLED 5/22/2001	7/6/2001	10/22/2001	12/5/2001	1/22/2002	3/14/2002	5/30/2002	8/21/2002	11/19/2002	2/11/2003	5/14/2003	8/19/2003	12/5/2000	1/19/2001	3/26/2001	5/22/2001	7/6/2001	10/22/2001	12/5/2001	1/22/2002	3/14/2002	5/30/2002	8/21/2002	11/19/2002	2/11/2003	5/14/2003	8/19/2003	12/5/2000	1/19/2001	3/26/2001	5/22/2001	7/6/2001	10/22/2001	12/5/2001	1/22/2002	3/14/2002	5/30/2002	8/21/2002	11/19/2002	2/11/2003	5/14/2003
ANALYTE 2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-I rinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-I rinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene																																	
LOCATION MW-2033	MW-2033	MW-2033	MW-2033	MVV-2033	MW-2033 W-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033	MW-2033									MW-2033								

Compounds
Nitroaromatic
cal Data -
Analytic

S UNITS ug/L ug/L ug/L	1,6n 1,6n 1,6n 1,6n	ng/L ng/L ng/L ng/L		ng/L ng/L ng/L ng/L ng/L ng/L ng/L	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
LAB_QUALIFIERS	ɔ ɔ		222	כככככככ	
DETECTION_LIMIT 0.13 0.03 0.05 0.05	0.05 0.03 0.07 0.11	0.03 0.03 0.07 0.03 0.03	0.07 0.07 0.03 0.03 0.04	0.03 0.03 0.03 0.03 0.03	0.03 0.08 0.09 0.08 0.08 0.08
RESULT 2.2 0.62 0.23 1.2 1.6	1.4 ND ND 4.6 2.3 0.61	0.20 0.22 0.26 0.75 0.75	6. 1. 6. 0 6. 0. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7. 0 7.	522222222	222222222
DATE_SAMPLED 8/19/2003 1/22/2002 3/14/2002 2/11/2003 5/14/2003	8/19/2003 1/22/2002 3/14/2002 2/11/2003 5/14/2003 8/19/2003	1/2/2002 3/14/2002 2/11/2003 5/14/2003 8/19/2003 1/22/2002 3/14/2002	2/11/2003 5/14/2003 8/19/2003 1/22/2002 3/14/2002 2/11/2003	8/19/2003 12/5/2000 1/19/2001 3/26/2001 5/22/2001 10/22/2001	1/22/2002 3/14/2002 5/30/2002 8/21/2002 11/19/2002 2/11/2003 5/14/2003 8/19/2003
ANALYTE 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 3-Nitrotoluene	3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene	4-Nitrotoluene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene	Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene
LOCATION MW-2033 MW-2033 MW-2033 MW-2033	MW-2033 MW-2033 MW-2033 MW-2033 MW-2033 MW-2033	MW-2033 MW-2033 MW-2033 MW-2033 MW-2033	MW-2033 MW-2033 MW-2033 MW-2033 MW-2033 MW-2033	MW-2033 MW-2033 MW-2033 MW-2033 MW-2033 MW-2033 MW-2033	MW-2033 MW-2033 MW-2033 MW-2033 MW-2033 MW-2033

UNITS	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L g/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L							
LAB QUALIFIERS) 		ס	⊃				>			D	D		⊃	>			7	>		>	J		J	ɔ	ɔ	ɔ			⊃	⊃	⊃	>			>	>		⊃	⊃	
DETECTION LIMIT	0.03	0.1	0.1	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.08	0.08	60.0	0.1	0.1	60:0	60:0	60:0	60.0	60.0	60.0	0.05	0.05	0.05	0.03	0.1	0.1	0.03	0.03	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.03	0.1	0.1	0.04
RESULT	Q	0.2	9	2	0.069	0.044	0.064	2	0.27	0.12	2	9	0.16	2	2	0.099	0.091	0.02	2	0.097	2	2	0.1	2	2	9	2	0.13	0.13	9	2	2	9	0.2	0.12	2	2	0.081	2	2	0.078
DATE SAMPLED	12/21/2000	6/13/2001	9/20/2001	12/10/2001	1/23/2002	3/14/2002	6/19/2002	9/25/2002	12/10/2002	3/19/2003	6/19/2003	9/18/2003	12/21/2000	6/13/2001	9/20/2001	12/10/2001	1/23/2002	3/14/2002	6/19/2002	9/25/2002	12/10/2002	3/19/2003	6/19/2003	9/18/2003	12/21/2000	6/13/2001	9/20/2001	12/10/2001	1/23/2002	2/25/2002	3/14/2002	6/19/2002	9/25/2002	12/10/2002	3/19/2003	6/19/2003	9/18/2003	12/21/2000	6/13/2001	9/20/2001	12/10/2001
ANALYTE	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene											
LOCATION	MW-2045 W-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045										MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045													

UNITS	na/L) () ()	η (n) (1)	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ug/L	ug/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/r	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L
LAB QUALIFIERS		Ξ	>				⊃					⊃														:	-)	-	:	> :	> :) :) :)	· •					:)
DETECTION IMIT	0.04	90.0	0.00	0.06	90:0	90:0	90.0	90.0	90:0	0.01	0.1	0.1	90:0	90:0	0.1	0.1	0.1	0.1	0.1	0.13	0.13	0.03	0.03	0.05	0.05	0.05	0.03	0.03	0.0	0.11	0.11	0.03	0.03	0.07	0.02	0.02	0.03	0.03	0.07	0.07	0.02	0.03
	0 0 7 7	5 2	ב צ	0.092	0.072	0.09	Q	0.1	0.1	0.62	0.73	2	0.76	0.63	0.49	0.74	0.59	0.8	0.52	0.71	0.73	0.54	0.39	0.53	0.71	0.7	2	2	2	0.11	2	2	Q	2	2	2	0.62	0.45	0.53	0.69	99.0	2
DATE SAMDLED	4737000	1/23/2002	3/14/2002	6/19/2002	9/25/2002	12/10/2002	3/19/2003	6/19/2003	9/18/2003	12/21/2000	6/13/2001	9/20/2001	12/10/2001	1/23/2002	3/14/2002	6/19/2002	9/25/2002	12/10/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2002	3/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2002	3/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2002	3/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2002	3/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2002
U +> 1 4 14 4	ANALTIE			2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Nitrotoluene											
NO.	LOCATION	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045					MW-2045			MW-2045					MW-2045				MW-2045							MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045	MW-2045

	3/14/2002 3/19/2003 6/19/2003 9/18/2003 12/21/2000 6/13/2001 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2002 9/18/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.03 0.04 0.05 0.03 0.03 0.03 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	3/19/2003 6/19/2003 9/18/2003 12/21/2000 6/13/2001 12/10/2001 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2003 6/19/2003 12/10/2003 12/10/2003 12/10/2003 12/10/2003 12/10/2003 12/10/2003 12/1/2000	O N O O O O O O O O O O O O O O O O O O	0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	6/19/2003 9/18/2003 12/21/2000 6/13/2001 1/23/2002 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2002 3/19/2003 9/18/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.05 0.03 0.03 0.08 0.09 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	9/18/2003 12/21/2000 6/13/2001 9/20/2001 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2002 3/19/2003 9/18/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.05 0.03 0.03 0.08 0.09 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	12/21/2000 6/13/2001 9/20/2001 12/10/2001 1/23/2002 6/19/2002 9/25/2002 12/10/2002 3/19/2003 6/19/2003 6/19/2003 6/19/2003 12/7/2000 12/7/2000 12/20/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.03 0.03 0.08 0.08 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	6/13/2001 9/20/2001 12/10/2001 1/23/2002 3/14/2002 6/19/2002 12/10/2002 3/19/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	9/20/2001 12/10/2001 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2003 9/18/2003 9/18/2003 12/7/2000 6/22/2001 1/23/2002	O O O O O O O O O O O O O O O O O O O	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	12/10/2001 1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2003 6/19/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O N O O O O O O O O O O O O O O O O O O	0.03 0.09 0.09 0.03 0.03 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	1/23/2002 3/14/2002 6/19/2002 9/25/2002 12/10/2003 6/19/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	ON ON ON ON ON ON ON ON ON ON ON ON ON O	0.03 0.09 0.09 0.03 0.03 0.03 0.03	o ooooo	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	3/14/2002 6/19/2002 9/25/2002 12/10/2003 3/19/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	0.15 O N O O O O O O O O O O O O O O O O O O	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	22222	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	6/19/2002 9/25/2002 12/10/2002 3/19/2003 6/19/2003 12/7/2000 6/22/2001 1/23/2002	O O O O O O O O O O O O O O O O O O O	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	9/25/2002 12/10/2002 3/19/2003 6/19/2003 9/18/2003 12/7/2000 6/22/2001 1/23/2002	O O O O O O O O O O O O O O O O O O O	0.00 0.00 0.00 0.00 0.00 0.00 0.00		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	12/10/2002 3/19/2003 6/19/2003 9/18/2003 12/7/2000 6/22/2001 1/23/2002	O N N O N N O N O N O N O N O N O N O N	0.00 0.00 0.00 0.00 0.03 0.03		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
	3/19/2003 6/19/2003 9/18/2003 12/7/2000 6/22/2001 1/23/2002	O N N N N N N N N N N N N N N N N N N N	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
	6/19/2003 9/18/2003 12/7/2000 6/22/2001 12/20/2001 3/14/2002	O O O S S S S S S S S S S S S S S S S S	0.00 0.00 0.00 0.03 0.03 0.04	ɔ ɔ	ug/L ug/L ug/L ug/L
	9/18/2003 12/7/2000 6/22/2001 12/20/2001 1/23/2002	O 2 3 3 3 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	0.00 0.03 0.03 0.03	D	ug/L ug/L ug/L
	12/7/2000 6/22/2001 12/20/2001 1/23/2002	5.5 5.4 5.5 5.5	0.00 0.03 0.03 0.04		ug/L ug/L ug/L
	6/22/2001 12/20/2001 1/23/2002 3/14/2002	3.8 2.6 5.4 5	0.03 0.03 0.03		ug/L ug/L ug/L
	12/20/2001 1/23/2002 3/14/2002	5.4 5.6	0.03 0.03		ug/L ug/L
	1/23/2002	2.6 5	0.03 0.04		ug/L
	3/14/2002	ر در	0.04		/
	100411	1			<u>ر</u> رو
	8/15/2002	3.7	0.04		ng/L
	2/11/2003	3.7	0.04		ug/L
	5/12/2003	- -	0.08		ug/L
	8/19/2003	4.8	0.08		ng/L
	12/7/2000	9	0.09	⊃	ng/L
	6/22/2001	9	0.09	⊃	ng/L
	12/20/2001	2	0.09	⊃	ug/L
	1/23/2002	2	60.0	D	ng/L
	3/14/2002	2	60:0)	ng/L
	8/15/2002	2	0.00	⊃	ng/L
	2/11/2003	2	0.05	⊃	ng/L
	5/12/2003	2	0.05)	ug/L
	8/19/2003	2	0.05	>	ng/L
	12/7/2000	2	0.03	⊃	ng/L
	6/22/2001	9	0.03)	ng/L
	12/20/2001	2	0.03	>	ng/L
WW-4015 2,4,6-Trinitrotoluene	1/23/2002	0.11	0.03	:	ng/L
	3/14/2002	2	0.08)	ng/L
	8/15/2002	2	0.08)	ug/L
MW-4015 2,4,6-Trinitrotoluene	2/11/2003	2	90.0	-	ng/L

STIND Alguments Al	ng/L ng/L ng/L ng/L ng/L ng/L
LAB_QUALIFIERS U U U U U U U U U U)
DETECTION_LIMIT 0.08 0.08 0.03 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.01 0.13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.07 0.07 0.03 0.03 0.07 0.07
ND ND 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.074 0.087	ND ND 2.9 3.7 2.6 ND ND
DATE_SAMPLED 5/12/2003 8/19/2003 12/7/2000 6/22/2001 1/23/2002 3/14/2002 2/11/2003 5/12/2001 1/23/2002 12/7/2000 6/22/2001 1/23/2002 3/14/2002 2/11/2003 8/19/2003 1/23/2002 3/14/2002 2/11/2003 8/19/2003 1/23/2002 3/14/2002 3/14/2002 3/14/2002 3/14/2002 3/14/2003 8/19/2003 1/23/2003 8/19/2003 1/23/2003 3/14/2002	2/11/2003 5/12/2003 8/19/2003 1/23/2002 3/14/2002 2/11/2003 5/12/2003 8/19/2003
ANALYTE 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,8-Mino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene	3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene
LOCATION MW-4015	MW 4015 MW 4015 MW 4015 MW 4015 MW 4015 MW 4015 MW 4015

LOCATION	ANALYTE	DATE_SAMPLED	RESULT	DETECTION_LIMIT	.AB_QUALIFIERS	UNITS
MW-4015	4-Nitrotoluene	3/14/2002	2	0.03	⊃	ng/L
MW-4015	4-Nitrotoluene	2/11/2003	2	0.04	⊃	ng/L
MW-4015	4-Nitrotoluene	5/12/2003	Q	0.05	⊃	ng/L
MW-4015	4-Nitrotoluene	8/19/2003	9	0.05	⊃	ng/L
MW-4015	Nitrobenzene	12/7/2000	9	0.03)	ng/L
MW-4015	Nitrobenzene	6/22/2001	2	0.03	¬	ng/L
MW-4015	Nitrobenzene	12/20/2001	2	0.03)	ng/L
MW-4015	Nitrobenzene	1/23/2002	9	0.03	⊃	ng/L
MW-4015	Nitrobenzene	3/14/2002	0.32	0.08		ng/L
MW-4015	Nitrobenzene	8/15/2002	9	0.08	J	ng/L
MW-4015	Nitrobenzene	2/11/2003	2	0.08	כ	ng/L
MW-4015	Nitrobenzene	5/12/2003	9	0.08	⊃	ng/L
MW-4015	Nitrobenzene	8/19/2003	2	0.08	>	ng/L

2/21/2001 0.078 0.03 ug/L 3/26/2001 0.31 0.03 ug/L 7/6/2001 0.12 0.03 ug/L 1/6/2001 0.39 0.03 ug/L 1/6/2001 0.39 0.03 ug/L 1/2/2002 0.39 0.03 ug/L 1/2/2002 0.39 0.03 ug/L 3/13/2002 0.39 0.03 ug/L 3/13/2002 0.27 0.04 ug/L 5/28/2002 0.27 0.04 ug/L 1/17/2002 0.21 0.04 ug/L 1/17/2002 0.21 0.04 ug/L 1/17/2002 0.21 0.04 ug/L 1/17/2002 0.18 0.04 ug/L 1/17/2002 0.18 0.04 ug/L 1/17/2002 0.18 0.04 ug/L 1/17/2002 0.19 0.04 ug/L 1/17/2002 0.1 ug/L ug/L 1/17/2002 <th>ANALYTE ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene</th>	ANALYTE ,3,5-Trinitrobenzene ,3,5-Trinitrobenzene
0.31 0.24 0.03 0.24 0.03 0.39 0.39 0.03 0.39 0.03 0.30 0.21 0.03 0.03 0.03 0.04 0.04 0.15 0.04 0.05 0.04 0.15 0.05 0.04 0.05 0.05 0.05 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09	2/21/2001
0.24 0.03 0.39 0.39 0.03 0.39 0.03 0.03 0.03	3/26/2
0.12 0.39 0.39 0.33 0.03 0.27 0.04 0.27 0.04 0.19 0.04 0.19 0.04 0.19 0.04 0.19 0.00 0.00	5/22/2
0.81 0.59 0.33 0.59 0.03 0.22 0.04 0.27 0.04 0.18 0.18 0.09 0.19 0.19 0.09 0.09 0.09 0.09 0.09	10/9/2
0.59 0.33 0.03 0.03 0.03 0.02 0.04 0.05 0.04 0.18 0.19 0.04 0.19 0.04 0.19 0.09 0.01 0.09 0.09 0.09 0.09 0.09	12/5/2
0.33 0.04 0.22 0.04 0.23 0.05 0.05 0.05 0.05 0.18 0.05 0.19 0.05 0.19 0.06 0.09	1/21/
0.22 0.24 0.27 0.04 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	3/13
0.27 ND 0.14 0.15 0.16 0.15 0.16 0.16 0.19	5/28
ND 0.04 0.14 0.15 0.04 0.03 0.15 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.0	7/2
0.21 0.18 0.19 0.19 0.09	9/1.
0.18 0.19 0.19 0.19 0.15 0.19 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.0	11/1
0.15 0.15 0.15 0.08 ND 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0	3/18
ND 3.6 ND 0.09	6/18
ND	9/16/
ND ND 0.099	12/11
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1/23/
ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	2/21/
ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	3/26/
ND 0.09 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.099 ND 0.093 ND 0	5/22/
ND 0.099 0.0	/9/2
ND 0.099 0.099 ND ND ND ND ND 0.099 ND ND ND 0.099 ND ND 0.099 ND	10/9
0.099 ND ND ND 0.099 ND ND ND 0.099 ND ND 0.099 ND ND 0.059 ND 0.059 ND 0.05 ND 0.05 ND 0.03 ND ND 0.03 ND ND 0.03 ND ND 0.03 ND ND ND 0.03 ND ND ND ND ND ND ND ND ND ND ND ND ND	12/5/
ND 0.09 ND 0.09 ND 0.09 ND 0.09 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	1/21
ND 0.09 ND 0.09 ND 0.09 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	3/13
ND 0.09 ND 0.09 ND 0.09 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	2/5
ND 0.09 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	12
ND 0.09 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	9/1
ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 U U U U U U U U U U U U U U U U U U U	11/
ND 0.05 ND 0.05 ND 0.06 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 U U U U U U U U U U U U U U U U U U U	3,
ND 0.05 ND 0.6 ND 1.2 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03 ND 0.03	/9
ND 0.6 ND 1.2 ND 0.03 ND 0.03 ND 0.03 U U U S.5 0.03 ND 0.03 ND 0.03 U U U U U U U U U U U U U U U U U U U	/6
ND 1.2 U 0.03 U	12/
ND 0.03 U U U U U U U U U U U U U U U U U U U	1/2
ND 0.03 U ND 0.03 U ND 0.03 U 2.4 0.03 ND 0.03 ND 0.03 U 1.2 0.08	2/2
ND 0.03 U 2.4 0.03 5.5 0.03 ND 0.03 U 1.2 0.08 U	3/26
ND 0.03 U 2.4 0.03 5.5 0.03 ND 0.03 U 1.2 0.08	5/5
2.4 0.03 5.5 0.03 ND 0.03 U 1.2 0.08	3/2
5.5 0.03 ND 0.03 U ND 0.08 U	10
ND 0.03 U ND 0.08 U 0.08 1.2	7
ND 0.08 U	7
1.2 0.08	· /c
	75

UNITS ug/L ug/L ug/L ug/L	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	7/6n ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/
LAB_QUALIFIERS U U	⊃	5
DETECTION_LIMIT 0.08 0.08 0.08 0.08	0.05 0.03 0.04 0.08 0.08 0.06 0.06 0.06	0.06 0.06 0.06 0.06 0.03 0.13 0.03 0.03
RESULT ND ND 1.2 0.67 0.78	0.59 ND 37 13 42 8.2 22 78 43 19 17 17 10 10 10 10 10	L UD 116 60 67 72 72 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75
DATE_SAMPLED 7/2/2002 9/17/2002 11/18/2002 3/18/2003 6/18/2003	3/10/2003 12/11/2000 1/23/2001 2/21/2001 3/26/2001 7/6/2001 1/21/2002 3/13/2002 5/28/2002 7/2/2002 11/18/2002 3/18/2003 6/18/2003	9/16/2003 12/11/2000 1/23/2001 2/21/2001 3/26/2001 5/22/2001 7/6/2001 1/21/2002 3/13/2002 5/28/2002 3/13/2002 3/18/2002 9/17/2002 11/18/2003 6/18/2003 1/23/2001 3/23/2001 3/23/2001 3/23/2001 3/23/2001 3/23/2001
ANALYTE 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene	2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dinitrotoluene	2,4-Dinitrotoluene 2,6-Dinitrotoluene
LOCATION MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2049

Page 2 of 18

UNITS UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65	7,67 7,60 7,60 7,60 7,60 7,60 7,60 7,60	7,50 1,00
LAB_QUALIFIERS	D .	D .	ɔ ɔɔɔɔɔɔɔ
DETECTION_LIMIT 0.05 0.05 0.05 1.2 0.6 0.6 0.6 0.11 0.11	0.03 0.03 0.03 0.03 0.07 0.07	0.03 0.03 0.07 0.07 0.07	0.03 0.03 0.05 0.05 0.03 0.03 0.03
RESULT 1.1 1.6 1.6 1.6 120 120 120 110 100 10	7.5 6.9 7 7 5.3 0.69 0.81	2.5 2.5 4.2 3.1 2.4 7.4 7.4 0.39	2.8 0.99 0.99 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DATE_SAMPLED 3/18/2003 6/18/2003 9/16/2003 1/23/2001 2/21/2001 3/26/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003	1/23/2001 2/21/2001 3/26/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003	1/23/2001 2/21/2001 3/26/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003 1/23/2001 2/21/2001	3/26/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003 12/11/2000 1/23/2001 2/21/2001 3/26/2001 5/22/2001 1/6/2001 1/21/2002 3/13/2002
ANALYTE 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene	4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene	4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene
LOCATION MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049

UNITS	ng/L	ng/L	na/L	 	1 / 51	7 /S:	ug/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/L	<u> </u>) 	7,00	رون ام/	ug/r	ug/L	ug/L	ng/L	ug/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ug/L	ng/L	ua/L	1/67	, g	سو/ر م/ا	₩,	ug/L e./	ug/L	ug/L	ug/L	ng/L	ng/L
LAB_QUALIFIERS	⊃	_))	=	> =	> =	> =	5																	=	> :	> :)))	>		-				⊃			Ξ)				> :	> =	5
DETECTION_LIMIT LAB_QUALIFIERS	0.08	0.08	0.08	0.08	0.08	0.08	0.08	90.0	0.00	5.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	† 0.0 70	500	600	80.0	000	00.0	8 co	80 00 00 00 00 00 00 00 00 00 00 00 00 0	60.0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	60.0	0.09	0.09	0.05	0.05	0.05	0 03	0.0	0.03	0.03	?
RESULT	Q :	Q Z	Q	2	2	Q	Q	S	. 6	- 0	- -	_ 4 5. c	<u>.</u> ن ک		5.4	7.3	7.9	4.7	4.4	4	4.3	7.7	6	5 6	} α	2	2 5	2 2		2 2	2 2	2 S	<u> </u>	⊇ ;	0.24	0.16	0.19	Q	0.13	0.32	N	0.22	0.23	S		2 2	2 5	<u>;</u>
DATE_SAMPLED	202/82/6	7/2/2002	9/1 //2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	12/11/2000	1/23/2001	2/21/2001	3/26/2004	5/20/2001	7/2/2001	1/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	12/11/2000	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/0/2001	10/9/2001	12/3/2001	1/21/2002	3/13/2002	5/29/2002	1/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	12/11/2000	1/23/2001	2/21/2001	3/26/2001	
ANALYTE	Nitrobenzene	Nitrobonzono	Nitrobolizerie	Nitiobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1.3.5-Trinitrobenzene	1.3.5-Trinitrohenzene	1.3.5-Trinitrohenzene	1.5.5 Trinitrobenzono	1, 2, 2 Figure London Lening 1 2 F Trimitato London	1,3,3-1 rinitropenzene	1,3,5-I rinitrobenzene	1,3,5-l rinitrobenzene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1.3-Dinitrobenzene	1.3-Dinitrohenzene	1.3-Dinitrohenzene	13-Dinitrobenzene	1.3-Dinitrobenzene	1 3-Dinitrobenzene			1,3-Uinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene							
LOCATION MW-2049	MW-2049	MW-2049	MW-2040	MW 2040	6407-MIN	MW-2049	MW-2049	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MANA 2050	000Z-MM	000Z-WWI	002-MM	MW-2050 W-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW 2050	0007-WW	OCOZ-MMI	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050								

Page 4 of 18

_	ng/L	ug/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ug/L	ug/L	ug/L "	ug/L "	ng/L	ug/L	ug/L	ng/L	ug/L						
LAB_QUALIFIERS	>	>		_	ɔ	⊃	⊃	¬	⊃			⊃	⊃																																
DETECTION_LIMIT	0.03	0.03	0.03	0.03	0.03	0.08	0.08	0.08	0.08	0.08	0.08	0.08	90.0	0.03	0.03	0.03	0.04	0.04	0.04	0.16	0.2	1.4	0.24	0.18	90.0	90.0	90:0	0.30043956	0.316021978	0.331604396	0.01	90.0	90.0	90.0	90.0	90.0	90.0	90:0	90:0	0.1	0.1	0.1	0.1	0.1	0.1
RESULT	Q	QN	0.46	Q	2	<u>N</u>	9	Q	2	0.73	0.36	9	9	0.3	0.48	0.74	0.62	7.7	12	78	32	40	53	20	5 6	99	45	56	41	39	3.9	1.8 8.	2.2	2.2	4 .	1.2	2.5	4.7	2	3.5	3.5	4.5	7.8	1	9
DATE_SAMPLED	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	12/11/2000	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	12/11/2000	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003
ANALYTE	2.4.6-Trinitrotoluene	2.4.6-Trinitrotolijene	2 4 6-Trinitrotolliene	2 4 6-Trinitrotoluene	2 4 6-Trinitrotoluene	2.4.6-Trinitrotoluene	2.4.6-Trinitrotoluene	2.4.6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene																														
LOCATION	MW-2050	MAY-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050

Page 5 of 18

UNITS UB/L	7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00
DETECTION_LIMIT LAB_QUALIFIERS 0.13 0.03	j. pp ppp
DETECTION_LIMIT 0.13 0.13 0.03 0.03 0.03 0.05 0.05 0.03	0.03 0.07 0.07 0.03 0.03 0.04 0.05 0.03 0.03
RESULT 18 18 21 1.2 1.2 1.5 1.7 1.1 2.3 3.3 3.2 1.6 1.8 1.8 0.44 3.1 0.87 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.6 8.3 8.1 0.16 ND ND 2.2 2.2 8.5 ND ND ND ND ND ND ND ND ND ND ND ND ND N
6/18/2003 9/16/2003 1/23/2001 2/21/2001 3/26/2001 1/21/2002 3/13/2002 3/13/2003 9/16/2003 1/23/2001 1/21/2002 3/13/2002 3/13/2002 3/13/2002 3/18/2003 6/18/2003 6/18/2003 6/18/2003 8/16/2003 1/21/2001 3/26/2001 1/21/2002 3/16/2003 8/16/2003 1/21/2001 3/26/2001 1/21/2003 8/16/2003 8/16/2003 1/21/2001 3/26/2001	1/21/2002 3/13/2002 3/18/2003 6/18/2003 1/23/2001 2/21/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003 1/2/11/2000 1/23/2001
ANALYTE 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Amino-4,6-dinitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 2-Nitrotoluene 3-Nitrotoluene	4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Amino-2,6-dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 6-Nitrotoluene 6-Nitrotoluene 7-Nitrotoluene 6-Nitrotoluene 7-Nitrotoluene 6-Nitrotoluene 7-Nitrotoluene 6-Nitrotoluene 7-Nitrotoluene 6-Nitrotoluene 7-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene 8-Nitrotoluene
LOCATION MW-2050	MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050

5	7/6n 7/6n 7/6n 7/6n 7/6n
LAB_QUALIFIERS U U U U U U U U U U U U U U U U U U	.
DETECTION_LIMIT 0.03 0.03 0.03 0.03 0.08 0.08 0.04 0.04 0.09	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.39 ND 0.47 0.6 0.47 0.61
DATE_SAMPLED 3/26/2001 5/22/2001 7/6/2001 10/9/2001 12/5/2001 12/5/2001 1/21/2002 3/13/2002 3/13/2002 3/13/2002 3/13/2002 2/13/2002 3/13/2002 3/17/2002 3/17/2002 3/17/2002 3/17/2003 9/18/2003 1/17/2002 3/17/2003 9/18/2003 1/17/2002 3/17/2003 9/18/2003 1/17/2002 3/17/2003 9/18/2003 1/17/2002 3/17/2003 9/18/2003 1/17/2003 9/18/2003 3/17/2003 9/18/2003 3/17/2003 9/18/2003 3/17/2003 9/18/2003	3/13/2002 5/28/2002 7/1/2002 9/12/2002 11//11/2002 3/17/2003 6/17/2003 1/17/2002
ANALYTE Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	2,4,0-1 mnitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene 2,4-6-Trinitrotoluene
LOCATION MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2052	MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2052

UNITS		9 -) - 	1	J.	ng/L	ng/L	ng/L	ng/L	ng/L) 	J .	ug/r	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/l	1/5	J /	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ua/I) () ()	υg/L α/'	ug/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L
LAB_QUALIFIERS)]	•	Ξ	•	Ξ) :	.	>	-	_	• =	=	o =) :	>											=	ɔ :	ɔ :	>	>	>			>	-	7					Ξ	5					_	
DETECTION_LIMIT LAB_QUALIFIERS	0.03	0.04	0.05	0.05	0.03	80.0	0000	0.00	0.08	0.08	0.08	0.08	0.08	0.08	80.0	0.00	50.0	40.0	0.04	0.04	0.04	0.04	0.04	700	80.0	80.0	90.0	0.0	60.0	60.0	0.00	0.09	0.09	0.09	0.05	0.05	0.05	0.03	0.08	0.08	80.0	80.0	0000	0.00	0.00	0.08	0.08	90.0	0.04
RESULT	Ω	Q	0.39	Q	0.082	Q		2 2	2 2	2	Q	Q	Q	QN	S	(e.	9.6	 	- 0	7.7	6.9	7	9.5	5.7	7.8	6.1	Š		2 2	2 2	<u> </u>	242	o :-	0.23	<u>2</u> :	ON !	0.034	9.7	7.3	6.3	6.2		0	. o		7 1	, , 1 œ,	۲.7	0.33
DATE_SAMPLED	3/13/2002	3/17/2003	6/17/2003	9/18/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/18/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	2002/02/02	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2002	5/17/2003	6/17/2003	9/1/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	0/11/2003	9/17/2003	1/1/2002
ANALYTE	4 Nitrotoliuelle	4-Initiotoluene	4-Initrotoluene	4-Nitrotoluene	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrohenzene	Nitrobossos	Nitrobenzene	Nitrobenzene	Nitrobenzene	Nitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1.3.5-Trinitrohenzene	1.3.5. Trinitrohomen	1,3,3-1 IIIIII ODENZENE	1,3,5-1 rinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1,3-Dinitrobenzene	1.3-Dinitrobenzene	1.3-Dinitrohenzene	1.3-Dinitrohenzene	1.3-Dinitrobenzene	2 A 6 Trinitrotoluses	2,4,0-1 illing oldinerie	2,4,0-1 rinitrotoluene	2,4,6-I rinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2.4.6-Trinitrotolijane	2.4 6-Trinitrotolijana	2.4-Dinitrotolijene	
LOCATION MW-2052	MW-2052	MW-2052	MIN 2050	202-WW	ZCDZ-MMI	MW-2052	MW-2052	MW-2052	MW-2052	MW-2052	MW-2052	MW 2052	2002-WW	ZC02-MM	MW-2052	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW 2052	5002-WIVI	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053									MW-2053		MW-2053	

Page 9 of 18

UNITS	na/L	1/01	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/L	ng/L))) () ()	ug/L	ng/r	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	na/L	l/bn	1/01	ng/L	
DETECTION LIMIT LAB QUALIFIERS	1				¬)		¬	_) ⊃	•				:	-						¬									⊃)		⊃))	⊃	-								=))	
DETECTION LIMIT	0.06	90.0	0.00	90.0	90:0	90.0	90'0	90.0	0.0	0.06	96 0	0.1	. ·	- ·	1.0	0.1	0.1	0.1	0.1	0.13	0.13	0.03	0.03	0.03	0.05	0.05	0.05	0.03	0.03	0.03	0.07	0.11	0.11	0.03	0.03	0.03	0.07	0.07	0.07	0.03	0.03	0.03	0.02	0.07	0.07	0.03	0.03	
RESULT	0.22	6	0.7	0.12	Q	Ω	0.21	2	2	2	5.	3 6	3 5	† •	φ. Σ	Q N	4.9	5.5	2.5	4.5	4	2	5.6	2.1	2.7	3.8	3.1	0.78	0.43	2	2	2	0.35	2	2	2	2	2	0.18	5.6	6 .	1.6	1.9	2.7	2.3	S	2	
DATE SAMPLED	2/13/2002	2/12/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	2/12/202	3/13/2002	2/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	
ANALYTE	2.4-Dinitrotoluene	2.4 Dinitrotoliumo	Z,4-Uinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2.4-Dinitrotoluene	2.4-Dinitrotoluene	2.4-Dinitrotoluene	2 4-Dinitrotoluene	2 4-Dinitrotoluene	2 A-Dinitrotoluene	2.6-Dinitrotoluene	2,0-Dinitotoluene	2,9-Diniti otoliuene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2.6-Dinitrotoluene	2,6-Dinitrotoluene	2.6-Dinitrotoluene	2-Amino-4.6-dinitrotoluene	2-Amino-4.6-dinitrotoluene	2-Amino-4.6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4.6-dinitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2 6-dinitrotoluene	4-Amino-2.6-dinitrotoluene	4-Nitrotolijana	4-Nitrotoluene	
LOCATION	MW-2053	MAN 2063	MW-2053	MW-2003	SCOZ-MINI	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053	MANA-2053	MW-2053																	

MW-2053		DAIE_SAMPLED	RESULT	DETECTION_LIMIT	DETECTION_LIMIT LAB_QUALIFIERS	UNITS
	4-Nitrotoluene	3/13/2002	S	0.03)	ng/L
MW-2053	4-Nitrotoluene	3/17/2003	2	0.04	⊃	ng/L
MW-2053	4-Nitrotoluene	6/17/2003	Q	0.05	,)	ug/L
MW-2053	4-Nitrotoluene	9/17/2003	2	0.05	D	ug/L
MW-2053	Nitrobenzene	1/17/2002	2	0.03)	ng/L
MW-2053	Nitrobenzene	2/13/2002	2	0.08	ɔ	ug/L
MW-2053	Nitrobenzene	3/13/2002	2.4	0.08		ng/L
MW-2053	Nitrobenzene	5/28/2002	Q	0.08	>	ng/L
MW-2053	Nitrobenzene	7/1/2002	2	0.08	⊃	ng/L
MW-2053	Nitrobenzene	9/12/2002	2	0.08	⊃	ng/L
MW-2053	Nitrobenzene	11/11/2002	Q	0.08)	ng/L
MW-2053	Nitrobenzene	3/17/2003	Q	0.08	Ð	ng/L
MW-2053	Nitrobenzene	6/17/2003	Q	0.08	つ	ng/L
MW-2053	Nitrobenzene	9/17/2003	Q	0.08	>	ng/L
MW-2054	1,3,5-Trinitrobenzene	1/17/2002	0.31	0.03		ng/L
MW-2054	1,3,5-Trinitrobenzene	2/13/2002	0.3	0.04		ng/L
MW-2054	1,3,5-Trinitrobenzene	3/13/2002	0.065	0.04		ng/L
MW-2054	1,3,5-Trinitrobenzene	5/28/2002	Q	0.04	⊃	ng/L
MW-2054	1,3,5-Trinitrobenzene	7/1/2002	<u>Q</u>	0.04	>	ng/L
MW-2054	1,3,5-Trinitrobenzene	9/12/2002	Q Q	0.04	⊃	ng/L
MW-2054	1,3,5-Trinitrobenzene	11/11/2002	0.099	0.04		ng/L
MW-2054	1,3,5-Trinitrobenzene	3/17/2003	0.17	0.04		ng/L
MW-2054	1,3,5-Trinitrobenzene	6/17/2003	0.46	0.08		ng/L
MW-2054	1,3,5-Trinitrobenzene	9/17/2003	0.18	0.08		ng/L
MW-2054	1,3-Dinitrobenzene	1/17/2002	2	0:00	⊃	ng/L
MW-2054	1,3-Dinitrobenzene	2/13/2002	2	0.00)	ng/L
MW-2054	1,3-Dinitrobenzene	3/13/2002	Q	0.00)	ng/L
MW-2054	1,3-Dinitrobenzene	5/28/2002	2	0.00	>	ng/L
MW-2054	1,3-Dinitrobenzene	7/1/2002	9	0.00	>	ug/L
MW-2054	1,3-Dinitrobenzene	9/12/2002	Q	0.00	>	ng/L
MW-2054	1,3-Dinitrobenzene	11/11/2002	2	0.09	>	ng/L
MW-2054	1,3-Dinitrobenzene	3/17/2003	2	0.05	ɔ	ug/L
MW-2054	1,3-Dinitrobenzene	6/17/2003	0.056	0.05		ug/L
MW-2054	1,3-Dinitrobenzene	9/17/2003	0.048	0.05	¬	ug/L
MW-2054	2,4,6-Trinitrotoluene	1/17/2002	2	0.03)	ug/L
MW-2054	2,4,6-Trinitrotoluene	2/13/2002	Q	0.08	-	ng/L
MW-2054	2,4,6-Trinitrotoluene	3/13/2002	2	0.08	-	ng/L
MW-2054	2,4,6-Trinitrotoluene	5/28/2002	2	0.08	-	ng/L
MW-2054	2,4,6-Trinitrotoluene	7/1/2002	2	0.08	⊃	ng/L
MW-2054	2,4,6-Trinitrotoluene	9/12/2002	2	0.08)	ng/L
MW-2054	2,4,6-Trinitrotoluene	11/11/2002	2	0.08)	ug/L
MW-2054	2,4,6-Trinitrotoluene	3/17/2003	2	0.08	-	ng/L
MW-2054	2,4,6-Trinitrotoluene	6/17/2003	Q	0.08	⊃	ng/L
MW-2054	2,4,6-Trinitrotoluene	9/17/2003	2	0.08)	ng/L
MW-2054	2,4-Dinitrotoluene	1/17/2002	6.4	0.04		ng/L

S UNITS ug/L	ng/L	ng/L	ng/L	J/Bn	J/gn na/l	lg/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ug/L	ng/L	ug/L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ug/L
LAB_QUALIFIERS		⊃								-	-	⊃							¬)	⊃					⊃					
DETECTION_LIMIT 0.06 0.06	90:0	90.0	90.0	0.00	0.06	0.06	0.24	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.13	0.13	0.03	0.03	0.03	0.05	0.05	0.05	0.03	0.03	0.03	0.07	0.11	0.11	0.03	0.03	0.03	0.0	0.07	0.02	0.03	0.03	0.03	0.07	0.07	0.07	0.03	0.03
RESULT 7.2 1.7	0.075	2	0.073	1.5	13	3.4	13	13	2.7	Ω	Q	Q	2.1	7.2	32	13	0.13	0.12	Q	0.091	0.27	0.14	5.3	6.2	1.3	0.73	16	3.5	0.41	0.38	Q	Q	0.95	0.39	0.21	0.22	Q	0.15	0.35	0.19	0.23	0.21
DATE_SAMPLED 2/13/2002 3/13/2002	5/28/2002	7/1/2002	9/12/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002
ANALYTE 2,4-Dinitrotoluene 2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Uinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Amino-4,6-dinitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	2-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	3-Nitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Amino-2,6-dinitrotoluene	4-Nitrotoluene	4-Nitrotoluene									
LOCATION MW-2054 MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054	MW-2054																

UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n
LAB_QUALIFIERS U U U	22222	רככככרכ ככ
DETECTION_LIMIT LAB_QUALIFIERS 0.03 U 0.05 0.05 0.05 0.08 U	0.08 0.08 0.09 0.03 0.03 0.03 0.04 0.03	0.04 0.04 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09
RESULT ND ND 0.37 0.1 ND ND	ON ON ON ON ON ON ON ON ON ON ON ON ON O	4.1 4.2 4.2 6.2 6.2 6.2 6.1 6.15 6.15 0.16 0.06 ND ND ND ND ND ND ND ND ND ND ND ND ND
DATE_SAMPLED 3/13/2002 3/17/2003 6/17/2003 9/17/2002 2/13/2002 3/13/2002	7/1/2002 9/12/2002 11/1/2002 3/17/2003 6/17/2003 12/11/2000 1/23/2001 2/21/2001 3/22/2001 10/9/2001 12/5/2001 1/23/2002 3/14/2002 8/15/2002	9/15/2002 3/18/2003 3/18/2003 6/18/2003 12/11/2000 1/23/2001 2/21/2001 5/22/2001 10/9/2001 1/23/2002 3/14/2002 8/15/2002 8/15/2002 8/15/2003 6/18/2003
ANALYTE 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene Nitrobenzene Nitrobenzene Nitrobenzene	Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene Nitrobenzene 1,3,5-Trinitrobenzene	1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene
LOCATION MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054	MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030	MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030

Page 13 of 18

	LAB_QUALIFIERS UNITS	ng/L	ug/L	ng/L	J, n d,	ng/L	ng/L	J,bn	ng/L	J,gu	J,Bn	ng/L	ng/L	ng/L "	ng/L	ng/L	ng/L	ug/L	Ug/L	Ug/L	ug/L	ug/L	القام التاريخ		ug/L	ug/L	ug/L		ug/L	ug/L	- 100 mg/c		19/L		ng/L	na/L	ng/L	na/L	nd/l) /c=	 	ug/L	ug/L	1/0/L	ug/r
	E E	0.03	0.03	0.00	0.03	50.0	50.0	50.0	50.0 0.0	5.00 000	50.0	0.08	80.0	80.0	80.0	90:0 0 08	80.0	0.03	0.03	0.03	0.03	0.0	0.04	0.04	0.04	0.04	0.6	90.0	0.0	0.0	0.00	0.00	0.06	0.01	90:0	90.0	90.0	90.0	0.06	90.0	0.00	0.00	0.1		0.1	
DATE SAMPLED BESILT	OBE	_												0				12/11/2000 0.12					7/6/2001 ND	_			3/14/2002 0.16	J		•	3/18/2003 ND	6/18/2003 0.11		_				_			12/5/2001 0.81	1/23/2002 0.58	3/14/2002 0.58	5/30/2002 0.21	8/15/2002 0.49	
ANALYTE	1,3-Dinitrobenzene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4,6-Trinitrotoluene	2,4-Dinitrotoluene	Z,4-Dinitrotoluene	2,o-Dinitrotoluene	2,0-Dinitrotoluene 2 6. Dinitrotoluene	2,0-Dillitrotolidelle 2 & Divitrotolidelle	2,0-Dinitrotoliuene 2 6-Dinitrotoliumo	o Dinitratal	2,0-Diritrotoluene	Z,o-Dinitrotoluene	Z,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene	2,6-Dinitrotoluene															
LOCATION	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030																				MW-4030 2												_	MW-4030 2,	

Page 14 of 18

LOCATION	ANALYTE	DATE_SAMPLED	RESULT	DETECTION_LIMIT	LAB QUALIFIERS UNITS	ITS
MW-4030	2,6-Dinitrotoluene	11/18/2002	9.0	0.1	na/L	/ <u>'</u>
MW-4030	2,6-Dinitrotoluene	3/18/2003	0.33	0.1	1/bn	<u>_</u>
MW-4030	2,6-Dinitrotoluene	6/18/2003	0.51	0.13	√on	. ~
MW-4030	2,6-Dinitrotoluene	9/18/2003	0.69	0.13	l/bn	. –
MW-4030	2-Amino-4,6-dinitrotoluene	1/23/2001	0.69	0.03	l/bn	<u></u>
MW-4030	2-Amino-4,6-dinitrotoluene	2/21/2001	0.77	0.03	1/bn	. ~
MW-4030	2-Amino-4,6-dinitrotoluene	3/27/2001		0.03	l/bn	<u> </u>
MW-4030	2-Amino-4,6-dinitrotoluene	1/23/2002	<u>+</u>	0.03	1/bn	. ~
MW-4030	2-Amino-4,6-dinitrotoluene	3/14/2002	7:	0.03	l/on	. 4
MW-4030	2-Amino-4,6-dinitrotoluene	3/18/2003	0.93	0.05	1/pn	! =
MW-4030	2-Amino-4,6-dinitrotoluene	6/18/2003	1.2	0.05	na/L	
MW-4030	2-Amino-4,6-dinitrotoluene	9/18/2003	1.5	0.05	T/on	! =
MW-4030	2-Nitrotoluene	1/23/2001	2	0.03		! =
MW-4030	2-Nitrotoluene	2/21/2001	S	0.03		! =
MW-4030	2-Nitrotoluene	3/27/2001	0.16	0.03		! =
MW-4030	2-Nitrotoluene	1/23/2002	0.11	0.03	l/bn	! =
MW-4030	2-Nitrotoluene	3/14/2002	2	0.03		! =
MW-4030	2-Nitrotoluene	3/18/2003	Ω Z	0.07		! =
MW-4030	2-Nitrotoluene	6/18/2003	0.45	0.11		! =
MW-4030	2-Nitrotoluene	9/18/2003	0.46	0.11		! =
MW-4030	3-Nitrotoluene	1/23/2001	2	0.03		! =
MW-4030	3-Nitrotoluene	2/21/2001	Q	0.03		! =
MW-4030	3-Nitrotoluene	3/27/2001	2	0.03	on O	! =
MW-4030	3-Nitrotoluene	1/23/2002	Q	0.03		
MW-4030	3-Nitrotoluene	3/14/2002	2	0.03	T/on O	! =!
MW-4030	3-Nitrotoluene	3/18/2003	Q	0.02	on O	. –
MW-4030	3-Nitrotoluene	6/18/2003	2	0.07		<u>.</u> –
MW-4030	3-Nitrotoluene	9/18/2003	0.14	0.07	on a	
MW-4030	4-Amino-2,6-dinitrotoluene	1/23/2001	0.84	0.03) bn	/
MW-4030	4-Amino-2,6-dinitrotoluene	2/21/2001	0.85	0.03)on	/
MW-4030	4-Amino-2,6-dinitrotoluene	3/27/2001	-	0.03	/bn	/L
MW-4030	4-Amino-2,6-dinitrotoluene	1/23/2002	1.2	0.03	J/bn	/
MW-4030	4-Amino-2,6-dinitrotoluene	3/14/2002	1.2	0.03	7/Bn	/
MW-4030	4-Amino-2,6-dinitrotoluene	3/18/2003	0.93	0.07	/bn	/
MW-4030	4-Amino-2,6-dinitrotoluene	6/18/2003	1.3	0.07	1/gn	7
MW-4030	4-Amino-2,6-dinitrotoluene	9/18/2003	1.5	0.07	1/6n	7/
MW-4030	4-Nitrotoluene	1/23/2001	9	0.03	1/gn ∩	/
MW-4030	4-Nitrotoluene	2/21/2001	2	0.03) U	7
MW-4030	4-Nitrotoluene	3/27/2001	2	0.03)bn n	_
MW-4030	4-Nitrotoluene	1/23/2002	9	0.03	U U	<u>/</u>
MW-4030	4-Nitrotoluene	3/14/2002	2	0.03	Ŋgn ∩	/ _
MW-4030	4-Nitrotoluene	3/18/2003	2	0.04	l/bn O	7/
MW-4030	4-Nitrotoluene	6/18/2003	S	0.05	/pn	"
MW-4030	4-Nitrotoluene	9/18/2003	Q	0.05	n na/bu	
MW-4030	Nitrobenzene	12/11/2000	9	0.03	l/on	. 7
					,	ı

Page 15 of 18

15 of 18

Page 16 of 18

LOCATION	ANALYTE	DATE_SAMPLED	RESULT	DETECTION_LIMIT LAB_QUALIFIERS	LAB_QUALIFIERS	UNITS	
MW-4039	2,4-Dinitrotoluene	1/17/2002	2	0.04	>	ng/L	
MW-4039	2,4-Dinitrotoluene	2/13/2002	Q	90.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	3/13/2002	Q	9.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	5/29/2002	2	90.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	7/1/2002	2	90.0	- ->	ng/L	
MW-4039	2,4-Dinitrotoluene	9/16/2002	Q	90.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	11/14/2002	2	90.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	3/19/2003	2	90.0	⊃	ng/L	
MW-4039	2,4-Dinitrotoluene	6/19/2003	9	90.0	D	ng/L	
MW-4039	2,4-Dinitrotoluene	9/18/2003	9	90.0	n	ng/L	
MW-4039	2,6-Dinitrotoluene	1/17/2002	0.074	90:0		ng/L	
MW-4039	2,6-Dinitrotoluene	2/13/2002	0.31	0.1		ng/L	
MW-4039	2,6-Dinitrotoluene	3/13/2002	Q	0.1	>	ng/L	
MW-4039	2,6-Dinitrotoluene	5/29/2002	S	0.1)	ng/L	
MW-4039	2,6-Dinitrotoluene	7/1/2002	Q	0.1)	ng/L	
MW-4039	2,6-Dinitrotoluene	9/16/2002	Q	0.1		ng/L	
MW-4039	2,6-Dinitrotoluene	11/14/2002	Q	0.1	>	ng/L	
MW-4039	2,6-Dinitrotoluene	3/19/2003	Q	0.1	⊃	ng/L	
MW-4039	2,6-Dinitrotoluene	6/19/2003	Q	0.13	>	ng/L	
MW-4039	2,6-Dinitrotoluene	9/18/2003	2	0.13)	ng/L	
MW-4039	2-Amino-4,6-dinitrotoluene	1/17/2002	2	0.03)	ug/L	
MW-4039	2-Amino-4,6-dinitrotoluene	2/13/2002	0.1	0.03		ng/L	
MW-4039	2-Amino-4,6-dinitrotoluene	3/13/2002	2	0.03	⊃	ng/L	
MW-4039	2-Amino-4,6-dinitrotoluene	3/19/2003	Q	0.05)	ng/L	
MW-4039	2-Amino-4,6-dinitrotoluene	6/19/2003	Q	0.05)	ng/L	
MW-4039	2-Amino-4,6-dinitrotoluene	9/18/2003	Q	0.05)	ng/L	
MW-4039	2-Nitrotoluene	1/17/2002	2	0.03	⊃	ng/L	
MW-4039	2-Nitrotoluene	2/13/2002	2	0.03)	ng/L	
MW-4039	2-Nitrotoluene	3/13/2002	2	0.03	⊃	ng/L	
MW-4039	2-Nitrotoluene	3/19/2003	Q	0.07	⊃	ng/L	
MW-4039	2-Nitrotoluene	6/19/2003	2	0.11	>	ng/L	
MW-4039	2-Nitrotoluene	9/18/2003	2	0.11)	ng/L	
MW-4039	3-Nitrotoluene	1/17/2002	2	0.03	>	ng/L	
MW-4039	3-Nitrotoluene	2/13/2002	0.12	0.03		ng/L	
MW-4039	3-Nitrotoluene	3/13/2002	Q	0.03)	ng/L	
MW-4039	3-Nitrotoluene	3/19/2003	Q	0.07	-	ng/L	
MW-4039	3-Nitrotoluene	6/19/2003	2	0.02	>	ng/L	
MW-4039	3-Nitrotoluene	9/18/2003	2	0.07	⊃	ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	1/17/2002	2	0.03	⊃	ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	2/13/2002	0.56	0.03		ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	3/13/2002	S	0.03	ɔ	ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	3/19/2003	2	0.07	-	ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	6/19/2003	2	0.02	>	ng/L	
MW-4039	4-Amino-2,6-dinitrotoluene	9/18/2003	2	0.07)	ng/L	
MW-4039	4-Nitrotoluene	1/17/2002	2	0.03	D	ng/L	

DETECTION_LIMIT LAB_QUALIFIERS UNITS

RESULT

DATE_SAMPLED

ANALYTE

LOCATION MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039 MW-4039

4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene 4-Nitrotoluene Nitrobenzene Nitrobenzene Nitrobenzene

2/13/2002 3/13/2002 3/19/2003 6/19/2003 9/18/2003 1/17/2002 2/13/2002 3/13/2002 5/29/2002

999999999999999

11/14/2002

3/19/2003 6/19/2003 9/18/2003

Nitrobenzene

Nitrobenzene

9/16/2002

7/1/2002

Nitrobenzene Nitrobenzene

Nitrobenzene Nitrobenzene

Nitrobenzene

_	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	DC!/F	pCi/L	DC!/L	DCI/L	pCi/L pCi/L	pCi/L	pCi/L	PCI/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	. i							
r Lab_qualifiers				⊃	⊃	⊃	⊃		⊃	⊃			⊃	J	J								3	3			7				
DETECTION_LIMIT	0.366	0.155	0.121	0.469	0.469	0.469	0.094	0.056	0.124	0.23	0.168	0.642	0.116	0.096	0.485	0.677	0.677	0.0745	0.68	0.677	0.677	0.0745	0.68	0.68	0.68	0.68	0.677	0.677	0.0745	0.68	99.0
UNCERTAINTY	0.261	0.22	0.15	0.049	0.049	0.051	0.084	0.077	0.111	0.142	0.126	0.337	0.071	0.064	0.259	0.018	0.43	0.315	0.5	0.063	0.14	0.0209	0.058	0.029	0.37	0.1	900.0	0.19	0.0276	0.12	900
RESULT	0.684	1.53	0.695	9	9	9	9	0.144	2	S	0.228	2	2	2	9	1.17	4.27	6.91	5.04	5.41	1.38	0.471	0.58	0.29	3.72	1.02	0.39	1.91	6.0	1.22	2 55
DATE_SAMPLED	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	5/22/2001	3/13/2002	7/2/2002	12/11/2000	5/22/2001	3/13/2002	7/2/2002	1/17/2002	1/17/2002	1/17/2002	12/11/2000	5/22/2001	3/14/2002	8/15/2002	1/17/2002
-	Radium-226	Radium-226	Radium-226	Radium-228	Radium-228	Radium-228	Thorium-228	Thorium-228	Thorium-228	Thorium-230	Thorium-230	Thorium-230	Thorium-232	Thorium-232	Thorium-232	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium	Uranium
LOCATION_CODE	MW-2049	MW-2050	MW-4030	MW-2049	MW-2050	MW-4030	MW-2049	MW-2050	MW-4030	MW-2049	MW-2050	MW-4030	MW-2049	MW-2050	MW-4030	MW-2049	MW-2049	MW-2049	MW-2049	MW-2050	MW-2050	MW-2050	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4030	MW-4030	MW-4030	MW-4039

UNITS	ma/L	ma/L	ma/L	ma/l	l/bul	l/bu	ma/L	ma/L	ma/L	ma/L	ma/L	ma/L	J/ou	ma/L	ma/L	ma/L	ma/L	ma/L	mg/L	•	
LAB QUALIFIERS	ı									Ф											
DETECTION LIMIT LAB QUALIFIERS	Z0 Z	20	20	0.1	0.1	0.1	0.02	0.05	0.2	0.05	0.05	0.1	0.05	0.4	0.25	0.05	ß	S	10		
RESULT	123	189	31.3	0.32	0.24	0.22	0.34	0.68	1.3	0.042	98.0	1.5	0.97	6.2	4.8	0.5	87.7	9.09	34.9		19
DATE_SAMPLED	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	12/11/2000	5/22/2001	12/11/2000	5/22/2001	1/17/2002	1/17/2002	1/17/2002	12/11/2000	5/22/2001	1/17/2002	12/11/2000	12/11/2000	12/11/2000		
ANALYTE	Chloride	Chloride	Chloride	Fluoride	Fluoride	Fluoride	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Nitrate as Nitrogen	Sulfate	Sulfate	Sulfate		
LOCATION										MW-2050											COUNT

LOCATION	ANALYTE	DATE_SAMPLED	RESULT	DETECTION_LIMIT	LAB_QUALIFIERS	UNITS
MW-2049	Aluminum	12/11/2000	1.2	0.0099		mg/L
MW-2050	Aluminum	12/11/2000	0.293	0.0099		mg/L
MW-2052	Aluminum	1/17/2002	1.1	0.0343		mg/L
MW-2053	Aluminum	1/17/2002	0.214	0.0343		mg/L
MW-2054	Aluminum	1/17/2002	R	0.0343)	mg/L
MW-4030	Aluminum	12/11/2000	1.1	0.0099		mg/L
MW-4039	Aluminum	1/17/2002	0.509	0.0343		mg/L
MW-2049	Antimony	12/11/2000	2	0.0028)	mg/L
MW-2050	Antimony	12/11/2000	2	0.0028	¬	mg/L
MW-2052	Antimony	1/17/2002	2	0.0033	⊃	mg/L
MW-2053	Antimony	1/17/2002	2	0.0033	⊃	mg/L
MW-2054	Antimony	1/17/2002	2	0.0033	⊃	mg/L
MW-4030	Antimony	12/11/2000	2	0.0028)	mg/L
MW-4039	Antimony	1/17/2002	2	0.0033)	mg/L
MW-2049	Arsenic	12/11/2000	2	0.0015	J	mg/L
MW-2050	Arsenic	12/11/2000	2	0.0015	⊃	mg/L
MW-2052	Arsenic	1/17/2002	2	0.0012	⊃	mg/L
MW-2053	Arsenic	1/17/2002	2	0.0012	⊃	mg/L
MW-2054	Arsenic	1/17/2002	2	0.0012	-	mg/L
MW-4030	Arsenic	12/11/2000	2	0.0015	¬	mg/L
MW-4039	Arsenic	1/17/2002	2	0.0012	-	mg/L
MW-2049	Barium	12/11/2000	0.142	0.0016	6	mg/L
MW-2050	Barinm	12/11/2000	0.253	0.0016		mg/L
MW-2052	Barium	1/17/2002	0.34	0.0108		mg/L
MW-2053	Barium	1/17/2002	0.232	0.0108		mg/L
MW-2054	Barium	1/17/2002	0.287	0.0108		mg/L
MW-4030	Barium	12/11/2000	0.233	0.0016		mg/L
MW-4039	Barium	1/17/2002	0.193	0.0108	മ	mg/L
MW-2049	Beryllium	12/11/2000	2	0.0002	⊃	mg/L
MW-2050	Beryllium	12/11/2000	2	0.0002	D	mg/L
MW-2052	Beryllium	1/17/2002	0.0011	0.00022	В	mg/L
MW-2053	Beryllium	1/17/2002	0.00069	0.00022	8	mg/L
MW-2054	Beryllium	1/17/2002	0.00068	0.00022	<u>B</u>	mg/L
MW-4030	Beryllium	12/11/2000	2	0.0002	⊃	mg/L
MW-4039		1/17/2002	2	0.00022	⊃	mg/L
MW-2049	Cadmium	12/11/2000	2	0.0003)	mg/L
MW-2050	Cadmium	12/11/2000	2	0.0003)	mg/L
MW-2052	Cadmium	1/17/2002	2	0.00031	⊃	mg/L
MW-2053	Cadmium	1/17/2002	2	0.00031	⊃	mg/L
MW-2054	Cadmium	1/17/2002	2	0.00031)	mg/L

(0																																								
UNITS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DETECTION LIMIT LAB QUALIFIERS	⊃ '	D		-						മ		മ	⊃	⊃	⊃	മ	⊃	>	മ	മ	-	⊃	⊃	മ	æ	മ	⊃	⊃	മ	⊃								⊃	⊃	ם
DETECTION_LIMIT	0.0003	0.00031	0.052	0.052	0.0934	0.0934	0.0934	0.052	0.0934	0.0008	0.0008	0.00073	0.00073	0.00073	0.0008	0.00073	0.0009	0.000	0.0016	0.0016	0.0016	0.000	0.0016	0.0012	0.0012	0.0014	0.0014	0.0014	0.0012	0.0014	0.0182	0.0182	0.0269	0.0269	0.0269	0.0182	0.0269	0.0016	0.0016	0.00099
RESULT	2	2	110	122	274	151	72.8	95.4	71.9	0.0013	0.0137	0.004	2	2	2	0.0058	2	2	0.0193	0.0049	2	2	2	0.0108	0.0027	0.0059	2	2	0.0044	2	1.24	0.452	1.53	0.527	0.125	1.2	1.34	2	2	2
DATE_SAMPLED	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002
ANALYTE	Cadmium	Cadmium	Calcinm	Calcinm	Calcinm	Calcinm	Calcinm	Calcium	Calcium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Chromium	Cobalt	Cobalt	Cobalt	Cobalt	Cobalt	Cobalt	Cobalt	Copper	Copper	Copper	Copper	Copper	Copper	Copper	lron	Iron	Iron	Iron	Iron	Iron	Iron	Lead	Lead	Lead
LOCATION	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052

Page 2 of 5

LOCATION	ANALYTE	DATE_SAMPLED	RESULT	DETECTION_LIMIT LAB_QUALIFIERS	LAB_QUALIFIERS	UNITS
MW-2053	Lead	1/17/2002	Q	0.00099	>	mg/L
MW-2054	Lead	1/17/2002	Q	0.00099	⊃	mg/L
MW-4030	Lead	12/11/2000	2	0.0016	⊃	mg/L
MW-4039	Lead	1/17/2002	Q	0.00099	⊃	mg/L
MW-2049	Lithium	12/11/2000	9	0.0094	⊃	mg/L
MW-2050	Lithium	12/11/2000	2	0.0094)	mg/L
MW-2052	Lithium	1/17/2002	0.0127	0.0104	മ	mg/L
MW-2053	Lithium	1/17/2002	0.014	0.0104	മ	mg/L
MW-2054	Lithium	1/17/2002	0.0208	0.0104	മ	mg/L
MW-4030	Lithium	12/11/2000	2	0.0094	>	mg/L
MW-4039	Lithium	1/17/2002	0.0203	0.0104	മ	mg/L
MW-2049	Magnesium	12/11/2000	20.2	0.0387		mg/L
MW-2050	Magnesium	12/11/2000	46.9	0.0387		mg/L
MW-2052	Magnesium	1/17/2002	38.7	0.141		mg/L
MW-2053	Magnesium	1/17/2002	30.4	0.141		mg/L
MW-2054	Magnesium	1/17/2002	45.5	0.141		mg/L
MW-4030	Magnesium	12/11/2000	41.4	0.0387		mg/L
MW-4039	Magnesium	1/17/2002	35.1	0.141		mg/L
MW-2049	Manganese	12/11/2000	0.108	0.0005		mg/L
MW-2050	Manganese	12/11/2000	0.0344	0.0005		mg/L
MW-2052	Manganese	1/17/2002	0.197	0.0004		mg/L
MW-2053	Manganese	1/17/2002	0.0309	0.0004		mg/L
MW-2054	Manganese	1/17/2002	0.0261	0.0004		mg/L
MW-4030	Manganese	12/11/2000	0.0852	0.0005		mg/L
MW-4039	Manganese	1/17/2002	0.0898	0.0004		mg/L
MW-2049	Mercury	12/11/2000	2	0.0001		mg/L
MW-2050	Mercury	12/11/2000	2	0.0001		mg/L
MW-2052	Mercury	1/17/2002	0.0001	0.0001	B	mg/L
MW-2053	Mercury	1/17/2002	0.0001	0.0001	B	mg/L
MW-2054	Mercury	1/17/2002	0.00035	0.0001	7	mg/L
MW-4030	Mercury	12/11/2000	2	0.0001	¬	mg/L
MW-4039	Mercury	1/17/2002	2	0.0001		mg/L
MW-2049	Molybdenum	12/11/2000	0.0052	0.0011	Ω.	mg/L
MW-2050	Molybdenum	12/11/2000	0.0055	0.0011	മ	mg/L
MW-2052	Molybdenum	1/17/2002	Q	0.0013		mg/L
MW-2053	Molybdenum	1/17/2002	2	0.0013	ɔ	mg/L
MW-2054	Molybdenum	1/17/2002	2	0.0013	ɔ	mg/L
MW-4030	Molybdenum	12/11/2000	0.004	0.0011	മ	mg/L
MW-4039	Molybdenum	1/17/2002	2	0.0013		mg/L
MW-2049	Nickel	12/11/2000	0.0319	0.0016	മ	mg/L

Page 3 of 5

	mg/L mg/L mg/L mg/L mg/L mg/L
LAB_QUALIFIERS U U U U U U U U U U U U U U U U	oo oo oo oo oo oo oo oo oo oo oo oo oo
DETECTION_LIMIT LAB_QUALIFIERS 0.0016 0.0013 0.0013 0.0016 0.0013 0.0013 0.0013 0.0022 0.00022 0.00012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013 0.0017 0.0013	0.0017 0.143 0.143 0.125 0.125 0.003 0.0022 0.0022 0.0022 0.0022
RESULT 0.0517 ND 0.0112 0.0274 4.82 5.05 8.46 5.98 3.36 8.46 5.98 3.37 ND ND ND ND ND ND ND ND ND ND	ND 102 62.3 389 54.4 20.2 25.8 25.8 22.1 ND ND 0.0107 0.0076
DATE_SAMPLED 12/11/2000 1/17/2002 1/17/2002 1/17/2002 12/11/2000 1/17/2002	1/17/2002 12/11/2000 12/11/2000 1/17/2002 1/17/2002 12/11/2000 12/11/2000 1/17/2002 1/17/2002 1/17/2002
ANALYTE Nickel Nickel Nickel Nickel Nickel Nickel Potassium Potassium Potassium Potassium Potassium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Selenium Silver Silver Silver Silver	Silver Sodium Sodium Sodium Sodium Thallium Thallium Thallium
LOCATION MW-2050 MW-2053 MW-2054 MW-4039 MW-2054 MW-2050 MW-2053 MW-2050	MW-4039 MW-2050 MW-2053 MW-4030 MW-4039 MW-2050 MW-2050 MW-2050 MW-2053 MW-2053 MW-2053

UNITS ma/l	1 <u> </u> /c	1 /ou	m //	- J/Su	, E) 1 / cu		1 /ou		,	, pu	, L	J/em	mg/L
LAB_QUALIFIERS BJ	ď	=	о 🚾) =	o ee		n cc	n 22		n cc	മ	· @	n a a
DETECTION_LIMIT 0.0022	0.0013	0.0013	0.0018	0.0018	0.0018	0.0013	0.0018	0.0007	0.0007	0.0013	0.0013	0.0013	0.0007	0.0013
RESULT 0.0073	0.0017	9	0.0036	2	9	0.0017	0.0025	0.0193	0.0177	9600.0	0.0088	0.0045	0.0119	0.0146
DATE_SAMPLED 1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002	12/11/2000	12/11/2000	1/17/2002	1/17/2002	1/17/2002	12/11/2000	1/17/2002
ANALYTE Thallium	Vanadium	Vanadium	Vanadium	Vanadium	Vanadium	Vanadium	Vanadium	Zinc	Zinc	Zinc	Zinc	Zinc	Zinc	Zinc
LOCATION MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039	MW-2049	MW-2050	MW-2052	MW-2053	MW-2054	MW-4030	MW-4039

NATS NATS	ug/L ug/L ug/L ug/L
	명명 명 그 그 그
DETECTION LIMIT 10 10 10 10 10 10 10 10 10 10 10 10 10	55555
RSS S S S S S S S S S S S S S S S S S S	4 4 4 N N N O O O
DATE_SAMPLED 12/11/2000	12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000
ANALYTE 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 2-Butanone 2-Butanone 2-Hexanone 2-Hexanone 2-Hexanone 4-Methyl-2-Pentanone 4-Methyl-2-Pentanone	Acetone Acetone Acetone Benzene Benzene
OD H	MW-2049 A MW-2050 A MW-4030 A MW-2049 B MW-2050 B

7/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1/8n 1
¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
555555555555555555555555555555555555555
222222222222222222222222222222222222222
12/11/2000 12/11/2000
Bromodichloromethane Bromodichloromethane Bromoform Bromoform Bromoform Bromomethane Bromomethane Bromomethane Carbon Disulfide Carbon Disulfide Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorothane
MW-2049 MW-2050 MW-4030 MW-2049 MW-2050 MW-2050 MW-2049 MW-2050 MW-2049 MW-2050 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2050 MW-2049 MW-2050 MW-2049 MW-2050

	ng/L ng/L ng/L ng/L ng/L
בככככרככככככר ברכככ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
5 5 5 5 5 - 5 - 5 - 5 5 5 5 5 5 5 5 5 5	5-5-555
S S S S S S S S S S S S S S S S S S S	2222222
12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000	12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000 12/11/2000
Methylene chloride Methylene chloride Styrene Styrene Styrene Styrene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Toluene Total Xylenes Total Xylenes Total Xylenes Total Xylenes Total Xylenes Total Xylenes Total Xylenes Total Xylenes Total Xylenes Trichloropropene Trichloroethene	Trichloroethene Trichloroethene Trichloroethene Trichloroethene Vinyl chloride Vinyl chloride
MW-2050 MW-4030 MW-2049 MW-2049 MW-2049 MW-2050 MW-2050 MW-2050 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049 MW-2049	MW-2049 MW-2050 MW-4030 MW-4030 MW-2049 MW-2050 MW-2050

UNITS	mg/L																																								
LAB QUALIFIERS	I																																								
RESULT	2.64	2.25	2.47	0.92	1.29	2.17	1.52	1.37	1.93	2.12	1.55	2.97	3.11	3.27	2.86	1.74	1.01	1.23	1.87	1.51	3.82	0.87	1.79	1.48	1.32	1.79	3.27	3.12	3.23	2.5	2.53	2.02	1.72	7	2.81	2.54	2.83	2.27	1.69	1.59	1.23
DATE SAMPLED	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/17/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/18/2003	1/17/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002
ANALYTE	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen	Dissolved Oxygen		Dissolved Oxygen
LOCATION	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2050	MW-2052	MW-2053	MW-2053	MW-2053	MW-2053	MW-2053																					

Page 1 of 11

Analytical Data - Field Parameters

Parametere	
Field	2
Cete C	2
Analytical	

mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L) E E E
	46 -57.3 4.3
DATE_SAMPLED 11/11/2002 3/17/2003 6/17/2003 6/17/2003 9/17/2002 2/13/2002 3/13/2002 3/17/2002 3/17/2003 6/17/2003 6/17/2003 6/17/2003 8/15/2001 10/9/2001 10/9/2001 11/18/2002 3/14/2002 3/18/2003 6/18/2003 6/18/2003 6/18/2003 8/16/2002 3/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003 6/19/2003	3/26/2001 6/18/2003 9/16/2003
ANALYTE Dissolved Oxygen	Oxidation Reduction Potential Oxidation Reduction Potential Oxidation Reduction Potential
LOCATION MW-2053 MW-2053 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-2054 MW-4030 MW-4030 MW-4030 MW-4030 MW-4039 MW-2049	MW-2049 MW-2049 MW-2049

Page 2 of 11

UNITS	<u>}</u>	/u	m/	~	λr.	m/	m/	m/	m/	m/	m/	mV	mV	m/	mV	/m	m/	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	S.U.
LAB_QUALIFIERS UN		_	_	_	_	_	_	_	_	_	_	_	-	_	_		•	9)	9)	<i>v</i>	5 7	<i>v</i> ,	<i>v</i> ,	<i>u</i> ,	<i>y</i>	5	9)	<i>(</i>)	5 7	v	5 7	•	5	S	55	v	S	50	9	3
RESULT	115	÷	78.3	153.8	105.5	150.7	252.9	237.3	260.3	255.6	96	247	119	222.3	271.9	-12	55.8	7.48	7.03	7.75	7.24	7.38	7.46	7.04	7.21	7.51	7.11	7.08	6.91	96.7	99'.	8.07	8.8	7.27	6.58	7.34	7.19	7.36	7.42	7.06
DATE_SAMPLED	2/21/2001	3/26/2001	6/18/2003	9/16/2003	6/17/2003	9/18/2003	6/17/2003	9/17/2003	6/17/2003	9/17/2003	1/23/2001	2/21/2001	3/27/2001	6/18/2003	9/18/2003	6/19/2003	9/18/2003	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/17/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001
ANALYTE Oxidation Reduction Potential	dation	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Reduction	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Oxidation Reduction Potential	Hď	Hd	Hd	Hd	Hd	Hd	Hd	Hď	Hd	Ha.	H _a	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd .
LOCATION MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2052	MW-2052	MW-2053	MW-2053	MW-2054	MW-2054	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4039	MW-4039	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050	MW-2050

Page 3 of 11

ANALYTE
11/18/2002
5/16/2003
9/16/2003
1/17/2002
2/13/2002
3/13/2002
2/28/2002
7/1/2002
9/12/2002
11/11/2002
3/17/2003
6/17/2003
9/18/2003
1/17/2002
3/13/2002
2/28/2002
9/12/2002
11/11/2002
6/17/2003
9/17/2003
1/17/2002
2/13/2002
3/13/2002
5/28/2002
7/1/2002
9/12/2002
11/11/2002
3/17/2003
6/17/2003
9/17/2003
2/21/2001
3/27/2001

Page 4 of 11

Analytical Data - Field Parameters

UNITS	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	s.u.	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm
LAB_QUALIFIERS I																							ה	ה	ה	ה	ה	'n	בֿ	5	'n	ב	ֹב	ֹב	ֹב	בּ	'n	5	ֹב	<u>ה</u>	5
RESULT	26.9	7.15	7.26	6.95	6.84	7.09	6.81	6.59	7.49	7.22	7	96.9	7.21	8.61	8.13	7.54	6.95	6.68	7.87	7.29	7.38	7.53	1103	1146	1014	1180	1210	1270	1230	1170	1160	1220	1190	1170	1150	1200	1103	1004	1346	1405	1583
DATE_SAMPLED	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/23/2002	3/14/2002	5/30/2002	8/15/2002	11/18/2002	3/18/2003	6/18/2003	9/18/2003	1/17/2002	2/13/2002	3/13/2002	5/29/2002	7/1/2002	9/16/2002	11/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/17/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	1/23/2001	2/21/2001	3/26/2001
ANALYTE	Hd	Hd	Hd	Hd	Hd	Hd	Ŧ.	Hd	Hd	Hd	Hd	Ha	Hď	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Hd	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance
LOCATION	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2050	MW-2050	MW-2050

Page 5 of 11

Analytical Data - Field Parameters

d Parameters	
Data - Fiel	
Analytical	

LAB_QUALIFIERS UNITS	nmhos/cm	nmhos/cm	mp/so/um	mp/solum	mpos/cm	nmhos/cm	mhos/cm	mpos/cm	mhos/cm	nmhos/cm	nmhos/cm	mhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	mp/solun	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	mhos/cm	nmhos/cm	mhos/cm	nmhos/cm	nmhos/cm	mhos/cm	mhos/cm	nmhos/cm	nmhos/cm	mp/solun	nmhos/cm	mp/solun	nmhos/cm									
RESULT	1430	1450	1430	1430	1300	1400	1420	1390	1370	1400	1390	1336	1317	3720	4160	4480	4780	4510	4450	4500	4790	4632	4372	1100	1150	1200	1180	1230	1180	1180	1125	1097	612	6260	603	929	642	639	655	701	200	
DATE_SAMPLED	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/18/2003	1/17/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	
ANALYTE	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	
LOCATION	MW-2050	MW-2052	MW-2053	MW-2054																																						

Page 6 of 11

Parameters	
Data - Field	
Analytical	

LAB_QUALIFIERS UNITS	nmhos/cm	mp/solum	mp/solum	mp/solum	mp/solum	nmhos/cm	mpys/cm	mp/solum	mp/solum	nmhos/cm	mp/solum	mp/solum	nmhos/cm	mp/solum	mpyos/cm	nmhos/cm	mhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	nmhos/cm	mpos/cm	nmhos/cm	mpys/cm	mp/solum	O	ပ	ပ	O	ပ	ပ	O	ပ	O	O	O	O	O	ပ	O	
RESULT	949	972	1049	1110	1060	1070	1090	1130	1030	931	1010	1050	1100	1070	1022	1083	612	326	277	342	458	835	930	871	627	9/9	12.4	13.5	11.1	14.6	14.7	15.4	14.3	13.2	14.7	15.1	15.6	14.7	14.8	13.7	16.7	
DATE_SAMPLED	9/17/2003	1/23/2001	2/21/2001	3/27/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/23/2002	3/14/2002	5/30/2002	8/15/2002	11/18/2002	3/18/2003	6/18/2003	9/18/2003	1/17/2002	2/13/2002	3/13/2002	5/29/2002	7/1/2002	9/16/2002	11/14/2002	3/19/2003	6/19/2003	9/18/2003	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/28/2002	7/2/2002	9/17/2002	11/18/2002	3/18/2003	6/18/2003	
ANALYTE	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	· `	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Specific Conductance	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	
LOCATION	MW-2054	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4039	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	:																		

Page 7 of 11

																																									Analytical Data - Field Parameters
	O ·	ပ	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O	O ·	ပ	υ (ပ	ပ ျ	O	O	O	O	O	O	O	O :	O	
	13.2	13.8	13.7	16.3	15.8	15.2	14.7	13.2	15.1	15.5	16.3	16.1	15	14.2	18	19.29	13.3	12.5	13.7	14.4	14.9	14.5	13.8	14.4	14.23	14.87	13.1	13.6	15.1	15.7	14.7	13.8	14.4	18.27	15.68	13	13.3	13.6	15.3	16.3	Page 8 of 11
007/01/0	1/23/2001	2/21/2001	3/26/2001	5/22/2001	7/6/2001	10/9/2001	12/5/2001	1/21/2002	3/13/2002	5/29/2002	7/2/2002	9/16/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/18/2003	1/17/2002	3/13/2002	5/28/2002	7/1/2002	9/12/2002	11/11/2002	3/17/2003	6/17/2003	9/17/2003	1/17/2002	2/13/2002	3/13/2002	5/28/2002	7/1/2002	rtion Pa

Temperature

Femperature Femperature Femperature

MW-2052

MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2053 MW-2053 MW-2053

emperature

emperature emperature emperature emperature emperature emperature emperature emperature emperature emperature emperature emperature

> MW-2053 MW-2053 MW-2053

ONITS

DATE_SAMPLED RESULT LAB_QUALIFIERS

9/16/2003

ANALYTE

-OCATION MW-2049 MW-2050

Temperature Temperature Temperature Temperature Temperature

MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2050 MW-2052

Temperature

emperature

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

Completion Report for the Frog Pond Groundwater Investigation

MW-2054

Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

MW-2053 MW-2053 MW-2053 MW-2054 MW-2054 MW-2054

MW-2053

Field Parameters	
1	
Data	
Analytical	

STIND O) O (ာ ပ	ပ	O (ပ (ی د	O	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	NTO	NTU	NTC	NTO	NTO	NTO	NTO	NTO	NTC	NTC	OTN .
LAB_QUALIFIERS																																				
RESULT 15 14.2	17.32	13.3	12.8	13.6	14.2	14.5 C: 45	14.2	14.3	14.1	15.2	15.7	13.7	13.8	18.04	16.83	12.3	<u>ჯ</u>	4	14.9	16.7	15.9	14.2	15	17.88	18.05	7	7	တ	7	12	0	7	0	0	0.41	14.
DATE_SAMPLED 9/12/2002 11/11/2002	6/17/2003	1/23/2001	2/21/2001	3/27/2001	5/22/2001	10/9/2001	12/5/2001	1/23/2002	3/14/2002	5/30/2002	8/15/2002	11/18/2002	3/18/2003	6/18/2003	9/18/2003	1/17/2002	2/13/2002	3/13/2002	5/29/2002	7/1/2002	9/16/2002	11/14/2002	3/19/2003	6/19/2003	9/18/2003	5/22/2001	7/6/2001	10/9/2001	1/21/2002	3/13/2002	7/2/2002	9/17/2002	11/18/2002	3/18/2003	6/18/2003	9/16/2003
ANALYTE Temperature Temperature	Temperature Temperature	Temperature	Temperature	Temperature	Temperature	i emperature Temperature	Temperature	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity																		
LOCATION MW-2054 MW-2054	MW-2054	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4030	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049	MW-2049

Page 9 of 11

	Analytical Data - Field Parameters
	N N F N
LAB_QUALIFIERS	
RESULT 41 36 41 36 41 41 41 41 41 41 41 41 41 4	3 0 3 0.41 Page 10 of 11
DATE_SAMPLED 5/22/2001 7/6/2001 10/9/2001 1/21/2002 3/13/2002 3/18/2003 6/18/2003 1/17/2002 3/13/2002 3/13/2002 3/13/2002 3/13/2002 3/17/2003 6/17/2003 6/17/2003 6/17/2003 6/17/2003 6/17/2003 8/17/2003	3/18/200 6/18/200 estigation
ANALYTE	Pond Groundwater Inv

Turbidity Turbidity

Turbidity Turbidity

MW-2054 MW-2054 MW-2054

Turbidity Turbidity

Turbidity Turbidity

MW-2054

MW-2054 MW-2054 MW-2054

Turbidity Turbidity

Turbidity Turbidity Turbidity

> MW-4030 **MW-4030** MW-4030 MW-4030 MW-4030 MW-4030 MW-4030 MW-4030

MW-2054

Turbidity

Turbidity Turbidity Furbidity Furbidity Turbidity

Turbidity Turbidity

MW-2050

MW-2050

MW-2050 MW-2050

Turbidity Turbidity **Turbidity** Turbidity Turbidity Turbidity

MW-2050 MW-2050 MW-2050

Furbidity

LOCATION MW-2050 MW-2050 Turbidity Turbidity Turbidity

Turbidity

MW-2050

MW-2052

MW-2050

MW-2052

MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2052 MW-2053 MW-2053 MW-2053 MW-2053 MW-2053 MW-2053

Turbidity Turbidity

Turbidity Turbidity

Turbidity Turbidity

Turbidity Turbidity

Completion Report for the Frog Pond Groundwater Investigation

UNITS	DT/N	NTC	NTO	NTC	NTO	NTO	NTC	NTO	NTO
LAB_QUALIFIERS									
RESULT	0.52	21	186	328	140	129	74	23	46.8
DATE_SAMPLED RE	9/18/2003	1/17/2002	2/13/2002	3/13/2002	9/16/2002	11/14/2002	3/19/2003	6/19/2003	9/18/2003
ANALYTE									
	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity	Turbidity
LOCATION	MW-4030	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039	MW-4039

APPENDIX C

Quality Control Data

UNITS COMMENTS PC//L RPD=4 PC//L RPD=10 UG/L RPD=10 UG/L RPD=10 UG/L RPD=2.0 UG/L RPD=3.1 UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=1.1 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=NC UG/L RPD=1.7 PC//L RPD=NC UG/L RPD=1.7 PC//L RPD=1.7 PC//L RPD=1.7 UG/L RPD=1.7 PC//L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=1.7 UG/L RPD=5.2 UG/L RPD=5.2 UG/L RPD=5.2 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3 UG/L RPD=5.3	UG/L %REC = 400; RPD = 1.9 UG/L %REC = 0.0; RPD = 2.1 UG/L %REC = 54; RPD = 11 UG/L %REC = 60; RPD = 1.7
0.0744 0.677 34.3 34.3 3.3 3.3 3.3 3.3 3.3 3.3 1.2 1.2 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 0.1 1.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	0.2 0.2 0.04
0.0231 0.045 0.037	
CONC 0.712 0.451 193 ND ND 151000 151000 1.11 ND ND ND ND ND ND ND ND ND ND ND ND ND	1200 1200 951 1.07 3.21
PARAMETER URANIUM, TOTAL URANIUM, TOTAL ALUMINUM ARSENIC BARIUM CALCIUM CALCIUM COPPER IRON LITHIUM MAGNESIUM MANGANESE MANGANIUM MANGANESE MANGANIUM	
DATE_SAN 3/14/2002 5/23/2001 1/17/2002 1	9/16/2002 9/16/2002 9/16/2002 3/14/2002
LOCATION DATE_SAI 2013 3/14/2002 2014 5/23/2001 2053 1/17/2002	2012 2012 2012 2013 2013
WSSRAP_ID GW-2013-031402-DU GW-2014-B301-DU GW-2053-011702-DU GW-2063-011702-DU GW-206-B302-MD GW-2006-B302-MD GW-2006-B302-MD GW-2012-B502-MD	GW-2012-8502-MD GW-2012-8502-MD GW-2012-8502-MD GW-2013-031402-MD

COMMENTS %REC = 78; RPD = 1.6 %REC = 64; RPD = 0.55 %REC = 66; RPD = 1.8 %REC = 66; RPD = 1.9 %REC = 66; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 65; RPD = 1.9 %REC = 57; RPD = 1.9 %REC = 57; RPD = 1.9 %REC = 57; RPD = 1.9 %REC = 51; RPD = 1.2 %REC = 51; RPD = 1.2 %REC = 91; RPD = 1.2 %REC = 91; RPD = 1.7 %REC = 91; RPD = 1.7 %REC = 91; RPD = 1.7 %REC = 91; RPD = 1.7 %REC = 92; RPD = 1.7 %REC = 91; RPD = 1.7 %REC = 94; RPD = 1.7 %REC = 94; RPD = 1.7 %REC = 90; RPD = 1.7 %REC = 94; RPD = 1.7 %REC = 90; RPD = 1.7 %REC = 90; RPD = 1.7 %REC = 90; RPD = 1.7 %REC = 90; RPD = 1.7 %REC = 90 %REC = 10 %REC = 10 %REC = 10 %REC = 10 %REC = 66 %REC = 66 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60 %REC = 60
CATAS A CAST A C
DF 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0
E CONTRACTOR DE LA CONT
CONC 1.56 1.53 1.47 1.98 1.35 1.35 1.35 1.35 1.36 1.36 1.36 1.37 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38
9.4742002 1,3-DINITROBENZENE 3/14/2002 2,4-6-TRINITROTOLUENE 3/14/2002 2,4-DINITROTOLUENE 5/23/2001 1,3-5-TRINITROBENZENE 5/23/2001 1,3-5-TRINITROBENZENE 1/17/2002 2,4-6-TRINITROTOLUENE 1/17/2002 2,4-6-TRINITRODENZENE 1/17/2002 2,4-6-TRINITRODENZENE 1/17/2002 2,4-6-TRINITRODENZENE 5/28/2002 2,4-6-TRINITROD
LOCATION DATE_SAM 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2014 5/23/2001 2015 3/14/2002 2053 1/17/2002 2065 5/28/2002 2066 5/28/2002 2012 9/16/2002 2012 9/16/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002 2013 3/14/2002
G C C C C C C C C C C C C C C C C C C C
WSSRAP_ID GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031402-MD GW-2013-031702-MD GW-2013-031702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2053-011702-MD GW-2063-011702-MD GW-2063-011702-MS GW-2012-B502-MS GW-2012-B502-MS GW-2012-B502-MS GW-2012-B502-MS GW-2012-B502-MS GW-2012-B502-MS GW-2013-031402-MS GW-2013-031402-MS

'																																										
COMMENTS	%REC = 67	%REC = 55	%REC = 54	%REC = 70	%REC = 69	REC = 60	%REC = 67	%REC = 69	%REC=91	%REC = 60	%REC = 56	%REC = 69	%REC = 55	%REC = 56	%REC = 51	%REC = 86	%REC = 85	%REC = 98	%REC = 41	%REC = 95	II	11	II	%REC = 99	%REC = 89	%REC = 90	%REC = 111	REC = 103	%REC = 109	%REC = 101	REC = 107	%REC = 101	%REC = 80	%REC = 96	%REC = 97	11	П	н	%REC = 95	%REC = 99	%REC = 99	%REC = 80
UNITS	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	PC//L	NG/L	NG/L	NG/L	UG/L	NG/L	NG/L	PCI/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	UG/L	NG/L	NG/L	NG/L	NG/L	NG/F	NG/L	UG/L	NG/L	NG/L	NG/L	UG/L	NG/L	NG/L	NG/L	NG/L
DL	90.0	0.1	0.03	0.03	0.03	0.03	0.03	0.08	0.0744	0.03	0.09	0.03	0.04	90.0	0.03	0.677	0.03	60.0	0.03	0.04	90.0	0.03	0.03	0.03	0.03	0.03	34.3	3.3	1.2	10.8	0.22	0.31	93.4	0.73	1.6	4.1	26.9	0.99	10.4	141	0.4	0.1
ERR									1.09							2.7																										
CONC	1.5	7	1.68	1.41	1.37	1.99	1.33	1.39	31.5	2.48	1.12	1.38	1.2	1.46	1.01	23.7	10	1.96	8.42	2.23	26.3	4.47	2.58	1.98	4.39	1.79	2430	517	2190	2250	54.1	50.3	191000	192	492	254	1490	510	1910	80100	528	0.903
LOCATION DATE SAM PARAMETER	2013 3/14/2002 2,4-DINITROTOLUENE	3/14/2002	2013 3/14/2002 2-AMINO-4,6-DNT	3/14/2002	2013 3/14/2002 3-NITROTOLUENE	2013 3/14/2002 4-AMINO-2,6-DNT	2013 3/14/2002 4-NITROTOLUENE	2013 3/14/2002 NITROBENZENE	2002	`	2014 5/23/2001 1,3-DINITROBENZENE	2001		2014 5/23/2001 2,6-DINITROTOLUENE	2014 5/23/2001 NITROBENZENE	/2001	, 2002	2002	1/17/2002	2002	1/17	2053 1/17/2002 2-AMINO-4,6-DNT	2053 1/17/2002 2-NITROTOLUENE	1/17/2002	1/17/2002	1/17/2002	2053 1/17/2002 ALUMINUM	2053 1/17/2002 ANTIMONY	1/17/2002	2053 1/17/2002 BARIUM	1/17/2002	1/17/2002	1/17/2002	1/17/2002	/2002 (2053 1/17/2002 COPPER	_	2053 1/17/2002 LEAD	2053 1/17/2002 LITHIUM	2053 1/17/2002 MAGNESIUM	2053 1/17/2002 MANGANESE	2053 1/17/2002 MERCURY
စ္	W.	WS	WS	WS	WS	WS	WS	WS	MS	MS	MS	MS	MS	MS	MS	WS	WS	MS	MS	WS	WS	WS	WS	MS	MS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	WS	MS
WSSRAP ID	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2013-031402-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2014-B301-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS	GW-2053-011702-MS

WSSRAP_ID	ac_lb	LOCATION DATE	DATE_SAM	PARAMETER	CONC	ERR	Ы	UNITS	VITS COMMENTS
GW-2053-011702-MS	WS	2053	1/17/2002	MOLYBDENUM	266		1.3	NG/L	%REC = 100
GW-2053-011702-MS	WS	2053	1/17/2002	NICKEL	495		1.3	NG/L	%REC = 99
GW-2053-011702-MS	WS	2053	1/17/2002	NITRATE-N	1.91		0.05	MG/L	%REC = 41
GW-2053-011702-MS	WS	2053	1/17/2002	NITROBENZENE	1.68		0.03	NG/L	%REC = 84
GW-2053-011702-MS	WS	2053	1/17/2002	POTASSIUM	21600		1840	NG/L	%REC = 103
GW-2053-011702-MS	WS	2053	1/17/2002	SELENIUM	2290		1.2	NG/L	%REC = 115
GW-2053-011702-MS	WS	2053	1/17/2002	SILVER	47.9		1.7	NG/L	%REC = 96
GW-2053-011702-MS	WS	2053	1/17/2002	SODIUM	00666		125	NG/L	%REC = 91
GW-2053-011702-MS	WS	2053	1/17/2002	THALLIUM	2090		2.2	NG/L	%REC = 104
GW-2053-011702-MS	MS	2053	1/17/2002	URANIUM, TOTAL	30.1	3.5	0.7	PCI/L	%REC = 97
GW-2053-011702-MS	WS	2053	1/17/2002	VANADIUM	486		1.8	NG/L	%REC = 97
GW-2053-011702-MS	WS	2053	1/17/2002	ZINC	547		1.3	NG/L	REC = 108

APPENDIX D

Nitroaromatic Soil/Source Investigations in the Frog Pond Area

INTER-OFFICE CORRESPONDENCE

DATE:

November 7, 2001

TO:

Distribution

FROM:

Earl Dowell (Ext. 3134)

SUBJECT:

RESULTS OF THE NITROAROMATIC COMPOUND INVESTIGATION

TRENCHING IN THE FROG POND AREA

Nitroaromatic contamination is increasing in select monitoring wells in the frog pond area of the site. On October 18-19, 2001, investigative trenching was performed at former ordnance works facilities and drainage features in the frog pond area to locate possible sources of the localized groundwater contamination. Attached for your information is the laboratory data, trenching details, trench locations map, Scope of Work, and Waste Analysis Plan addendum.

At each of the eight trenches the excavated materials were inspected visually for nitroaromatics contamination, and a composite sample of soil was taken from the bottom. At trench FP-08, a biased sample was also obtained.

Results:

<u>Trenches FP01-FP07</u> - no visible nitroaromatics contamination. Composite samples for all nitroaromatics reported at less than 1 mg/kg (ppm) or undetected.

Trench FP-08 - nitroaromatics contamination noted in small pockets in east portion of trench at two separate elevations. Total volume estimated at approximately 2 cubic feet. Composite sample from soils at bottom of trench 2,4,6-TNT result of 210 mg/kg; biased sample of contaminated soil 2,4,6-TNT result of 1300 mg/kg.

Distribution:

Cato-Johnston, Becky Delaney, Joe Hamilton, Karl Hixson, Dave Kerr, Mike Lutz, Melissa Meier, Jim Thompson, Jack Uhlmeyer, Terri Warren, Steve

Cc: Anderson, Scott

Bailey, Ray Enger, Linda Pauling, Tom

EC 2.1.19 Attachments

Report Date: 10/30/01 14:42	WM-D272-1018 01 004 MSD SOIL 1.00 uq/kq
thod 8330 Report Date: J	WM-D272-1018 WM-D272-1018 01 01 004 MS 004 MSD SOIL 1.00 1.00 ug/kg
00	Cust ID: WM-D269 1018 WM D270-1018 WM-D272-1
tory, / Me	WM(D271-1018 003 301L 1.00 ug/kg
Explosives by HPLC / Method 8330 Client: MK FERGHSON MSSEDD	WM (D270-1018 002 SOIL 1.00 ug/kg
Exp.	WM-D269 1018 01 SOIL 1.00 ug/kg
01101175	Cust ID: RFW#: Matrix: D.F.: Units:
RFN Batch Number: 0110L175	.Sample Information

91 \$. *	104	97	97 %	101		WM-D277-1019	*	000	SOIL	10.0	ug/kg	a Q		1800 J	2500 U	2600 U	1	2600 U	
94 \$	100 %	100 %	107	100	₽ 86	104 \$		WM-6276-1019); };	008 (DL)	SOIL	20.0	ng/kg	a A	nerecaecae	MA	NA	NA.	210000)) N	. NA ZIO my/K
91 \$	250 U	250 U	260 U	250 U	. 260 U	250 U		WM-D276-1019	10	800	SOIL	2.00	ng/kg	91 \$:=====================================	500 U	200 U	520 D	E	520 U	500 U
95 \$	fl 250 U	250 U	260 U	250 U	260 U	250 U		WM-D275-1019	};	000	SOIL	1.00	ng/kg	94 %	11 11 11 11	250 U	250 U	260 U	250 U	260 U	250 U
	250 U	250 U	D 09%	(590)	260 U	250 U		WW-D274-1019	To	900	SOIL	ν. τ	ng/kg	91 \$	sassesses [] =	250 U	250 U	260 U	250 U	260 U	250 U
		250 U	260 U	250 U	260 U	250 U	(WN-D273-1018	10	500	SOIL	1.00	ng/kg		1	250 U	250 U	260 U	250 U	260 U	250 U
1,2-Dinitrobenzene	1,3,5-Trinitrobenzene	I, 3-Dinitrobenzene	7 4 6-Tribitrotoliono	2 A-Dinitrotolucie	2 A-Dinitrotolucie	a, a - Danie Labora uene		Cust ID: WM	Sample	1		:	Units:	1,2-Dinitrobenzene		1,3,5-Trinitrobenzene	Material Constant	A C majait Late	2, 4, 0-111111110Coluene	2 A-Dinitrotoluene	

"Preliminary DATA"

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. {= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of BPA CLP QC

Report Date: 10/30/01 14:42

Explosives by HPLC / Method 8330

Lionville Laboratory, Inc.

05541005004 Page:

5004 rage: 2		
Work Order: 05541005004 Page: 2	вгк вз	LLC032-MB1 SOIL 1.00 vg/kg
Client: MK FERGUSON WSSRAP	BLK	01LLC032-MB1 01LLC032-MB1 SOIL SOIL 1.00 1.00
Client: MCK	Cust ID; WM D277 1019	009 (b) SOID 100 ug/kg
: 0110L175	Cust ID;	RFW#: Matrix: D.F.: Units:
RFW Batch Number: 0110L175		Sample Information

Ę		•		** 4* *		-	•	•
dip.	=£]==	ak*	sk®	%	40	de	مد	
96		103	86	104	86	96	101	
مد	=£]===	þ	Ω	2	n	D	D	
94	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	250	250	260	250	260	250	
	11 11 11 11						mg kg	
40	===£]=				(g	1	1300	
Ω		NA	AN	AM.	7,3000		NÀ	
1,2-Dinitrobenzene	(有数形形形形形形形形成 经现代的 医多种甲基甲基甲基甲基甲基甲基甲基甲基甲甲基甲基甲甲基甲基甲甲基甲基甲基甲基甲基甲	ınzene	ine		Juene	en e	ane	
-		1,3,5-Trinitrobenzene	1.3-Dinitrobenzene	Nitrobenzene	2 4 6-Trinitrotoluene	2 6-Dinitrotoluene	2,4-Dinitrotoluene	

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spike 🐛 Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

"Preliminary DATA DATE 10 3901 INT 65

TRENCHING DETAILS

FP-01 TRAM LINE RELAY HOUSE

Sample #WM-D274-101901

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of approximately 8 feet
- Vitrified clay pipe at depth of approximately 5 feet, radioactively contaminated
- No perched water

FP-02 CONFLUENCE OF DRAINAGE DITCHES

Sample #WM-D269-101801

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of 14-15 feet
- Residuum encountered at west end of trench
- Trench length extended 10-15 feet at west end
- No perched water

FP-03 NORTH DRAINAGE DITCH

Sample #WM-D270-101801

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than 1 mg/kg (ppm)
- Trench excavated to depth of approximately 10 feet
- Debris encountered includes concrete, metal straps, rebar
- No perched water

FP-04 SOUTH DRAINAGE DITCH/ROAD CULVERT

Sample #WM-D271-101801

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of approximately 12 feet at west end, approximately 18 feet at east end
- Remnants of metal culvert pipe found
- No perched water

FP-05 SOUTH DRAINAGE DITCH, MIDDLE SECTION

Sample #WM-D272-101801

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of approximately 18 feet
- Debris encountered includes brick, gravel
- No perched water

FP-06 SOUTH DRAINAGE DITCH, SOUTH END

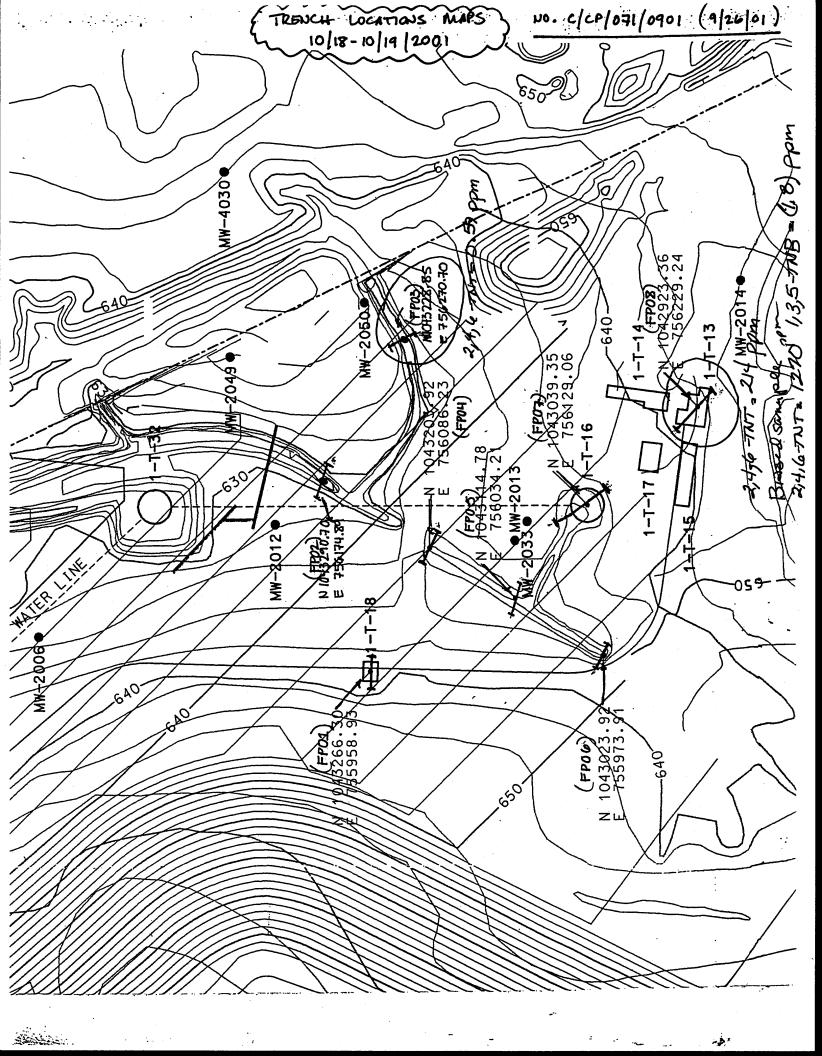
Sample #WM-D273-101801

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of approximately 19 feet
- Bedrock encountered at east end of trench
- No perched water

FP-07 SOUTH DRAINAGE DITCH, FORMER TANK LOCATION

Sample #WM-D275-101901

- No visible indication of nitroaromatics contamination
- Nitroaromatics analytical results all less than detection limits
- Trench excavated to depth of approximately 12 feet
- Small amount of debris
- No perched water


FP-08 FORMER T-13 TRI-NITRATION HOUSE LOCATION

East half trenched 10/18/01, west half trenched 10/19/01

Sample #WM-D276-101901 (composite)

#WM-D277-101901 (biased)

- Visible nitroaromatics contamination in east end of trench at approximate 5 foot elevation and near bottom of trench, though small amount (approx. 2 cubic foot volume). No visible indications of nitroaromatics contamination in west end of trench
- 2,4,6-TNT results for composite sample 210 mg/kg (ppm)
- 2,4,6-TNT results for biased sample 1300 mg/kg (ppm)
- Trench excavated to depth of approximately 12 feet
- Trench length extended approximately 25 feet at west end (total 55 feet)
- No perched water

SCOPE OF WORK NITROAROMATIC COMPOUND INVESTIGATION TRENCHING IN THE FROG POND AREA

Purpose and Scope

Nitroaromatic contamination is increasing in select monitoring wells in the frog pond area of the site. Possible sources include former Ordnance Works process building locations and surface drainage features, associated with TNT Line #1. The purpose of this proposed investigation is to locate possible sources of this localized groundwater contamination by exposing subsurface regions of possible sources for visual inspection and sampling of soil and water, as appropriate

Trenching

The possible sources of contamination to be investigated include former Ordnance Works process building locations, surface drainage features, and waste pond drainage associated with line #1. Trenching is proposed at the following locations (Figure 1):

- 1. Building T-13 location
- 2. Building T-16 location
- 3. Building T-18 location
- 4. Various surface drainage locations (total of 5)

A summary of the coordinates of the center point of each trench and estimated maximum depth are presented in Table 1. All locations will be staked in the field by DHO prior to field activities. The orientation of each trench is shown on Figure 1.

Table 1 Trench Locations

Trench ID	Location	Northing	Easting	Estimated Depth
FP01	T-18 - Wet Powder Holdover	1043266.30	755958.93	8 ft
FP02	Drainage	1043290.70	756174.89	13 ft
FP03	Drainage	1043228.85	756270.70	8 ft
FP04	Drainage	1043203.92	756086.23	10 ft
FP05	Drainage	1043114.78	756034.21	16 ft
FP06	Drainage	1043023.92	755973.91	17 ft
FP07	T-16 – Wash Wastewater Settling Tank	1043039.35	756129.06	12 ft
FP08	T-13 – Wash House	1042923.36	756229.24	6 ft

At each location, a trench will be excavated and soils inspected for discoloration associated with nitroaromatic compounds. During trenching operations soils will be placed in individual piles for visual inspection by the PMC. Trench walls and excavated soil will be inspected for evidence of ordnance-era surface soils to assist locating sampling horizons. There is a possibility that concrete foundations and/or piers may be encountered during this activity.

After inspection and possible sampling by the PMC, the soils will be returned to the trench. Efforts will be made to replace soils so that the bottom soils are returned to the base of the trench. No trenches will remain open overnight.

SAMPLING

If discolored soil or perched groundwater is encountered during trenching activities, samples will be collected as outlined in the addendum to the *Waste Analysis Plan*, Rev. 10, DOE/OR/21548-128.

INTER-OFFICE CORRESPONDENCE

DATE: September 25, 2001

TO:

Distribution

FROM:

Earl Dowell

SUBJECT:

WASTE ANALYSIS PLAN, DOE/OR/21548-128 REV. ADDENDUM FOR CHARACTERIZATION OF NITROAROMATIC SOILS DURING TRENCHING INVESTIGATION NORTHEAST REGION OF THE SITE

The following Waste Analysis Plan Addendum outlines the waste analyses that will be performed to characterize any nitroaromatics contamination during trenching investigation in the frog pond area. The sampling activity will be conducted under the Waste Analysis Plan, Rev. 10, DOE/OR/21548-128.

Nitroaromatic contamination is increasing in monitoring wells in the frog pond area of the site. Possible sources include former Ordnance Works process building locations and surface drainage features, associated with TNT Line #1. The purpose of this proposed investigation is to locate possible sources of localized groundwater contamination by exposing subsurface regions of possible sources for visual inspection and sampling of soil and water, as appropriate.

Historical info indicates TNT/DNT contamination frequently washed from the Ordnance Works process buildings into the surface drainages/ditches. Overflows or leaks occurred from waste ponds, settling tanks, and piping. Soils surrounding the process buildings were contaminated.

During trenching operations, the PMC will inspect the trench walls and excavated soil for evidence of ordnanceera surface soils to assist locating sampling horizons. Soil and water samples will be collected if

(discolored soil and/or water) is visually identified during trenching. To reach former surface elevations it is expected trenching depths of 10-20 feet will be necessary. Trenching will be performed at the following locations (see attached drawing):

- 1. Building T-13 location
- 2. Building T-16 location
- 3. Building T-18 location
- 4. Various surface drainage locations (total of 5)

Soil and water samples will be placed in containers listed in below table. Each soil sample will consist of 3 aliquots from the sampled area, using plastic scoops. Samples will be assigned a unique waste management identification number. Sample depths and other pertinent information will be documented on Field Sampling Data Forms. Quality control samples will be obtained at a rate of 1 pér 20 samples, or one per project. All record keeping requirements presented in the Waste Analysis Plan will be adhered to as part of this sampling addendum.

Analysis (soil)	Container	Preservative
Isotopic thorium, Radium-226,	Plastic bag (1000 grams)	NA
Radium-228, Uranium-238		
Nitroaromatics, TCLP Semi-	500 gram amber glass jars	Cool (4 degrees C)
VOA	(QC sample-1L amber glass)	

Analysis (water)	Container	Preservative
Uranium, total	500 ml plastic bottle	PH < 2, nitric acid
Nitroaromatics (GWOU list)	1 liter amber glass bottle (QC sample-3L amber glass)	Cool (4 degrees C)
TCE (if needed)	2 x 40 ml Vial	2 drops HCL, Cool (4 degrees C)

APPROVALS	•
Jan R. Thompson	9/26/01
Data Administration Coordinator - Randy	Thompson
David Shirt	9/24/01
ES&H Manager - David Hyxson	", ", "
Main L. Dales	9-26-01
Engineering Manager - Marjorie Oaks	
This D. Gotte	9/26/2001
Quality Manager - Phil Cate	
Steva Drave	9/27/01
Deputy Project Director - Steve Warren	

Distribution:
 Signatories Becky Cato-Johnston Jim Meier Terri Uhlmeyer

ALARA Committee Meeting Minutes November 13, 2001

Attendees:

T. Pauling $\mathcal{H}(\mathcal{O})$

E. Dowell \(\square \) G. Valet L. Enger M. Lutz

D. Hixson *

J. Meier

S. Warren *

* - Denotes ALARA committee members

The ALARA committee met on November 13, 2001 to discuss three issues. The first issue concerned the results of exploratory trenching for nitroaromatic sources in the Frog Pond area of the Chemical Plant. The second issue concerned the uranium concentration in a core sample collected near a vicinity property location. The third issue concerned utility samples collected in Ash Pond work zone CU297.

ISSUE 1:

Exploratory trenching was conducted in the Frog Pond work zone in an attempt to identify a possible nitroaromatic source which could potentially cause elevated concentration in nearby monitoring wells. Of the three trenches excavated in August, 2000 and the eight trenches excavated in November, 2001, samples in only one trench yielded any significant level of nitroaromatics. The trench was located at the former site of ordinance works building T-13 (wash house). The site was selected in order to indicate whether any large nitroaromatic sources were evident near the building footprint and the drainage in that area.

The soil was a very dark fill material until a depth of 12 feet, where natural soils were observed. Red stained soil was identified at a depth of approximately 4 - 5 feet in the excavation, which was initially excavated to approximately 30' x 12' x 3-4' in size. Two samples were collected; one biased with regard to the red soil and one a composite of red and surrounding soil. The trench was expanded to 55' x 12' x 3-4' and then backfilled, with the stained soil being returned to the excavation first.

The samples were analyzed at an off-site laboratory for the six nitroaromatic compounds. The results indicated 2,4,6-trinitrotoluene (TNT) concentrations of 1270 and 214 ug/g. Criteria levels for TNT are identified in the *Chemical Plant Area Cleanup Attainment Confirmation Plan* as 140 ug/g for surface and 1,400 ug/g for subsurface. Therefore, the sample results are below subsurface criteria.

In determining whether to excavate the material, several things were considered. First, it was determined that applying subsurface criteria is consistent with the logic used in past similar situations with respect to raffinate pits 3 and 4. Second, it was determined that the likely locations of nitroaromatic sources in the Frog Pond work zone have been investigated and the ALARA committee members are confident that all reasonable actions have been taken to identify any specific large nitroaromatic sources in that area. Additionally, four new monitoring wells are scheduled for installation in locations bounding this area and the wells will be monitored bi-monthly, similar to the existing wells in the area. The committee agreed that it is not reasonable to conduct additional excavations or further remediation in this area. The data will be forwarded to ANL.

ISSUE 2:

On November 7, 2001, a drill rig pulled a sample core from a boring near Vicinity Property 9. Drilling was being performed to support geochemical characterization of the area north of the Femme Osage slough. Beta-gamma measurements were taken along the length of the sample core. At approximately the 8 foot level, at the interface between the oxidation and reduction zones, beta-gamma concentration levels up to 11,200 dpm were detected. The core was sampled and analyzed in the site laboratory. Qualitative results of the core sample were 148.36 pCi/g uranium.

ALARA Committee Meeting May 20, 2002

Attendees:

Dave Hixson*

Steve Warren*

Karl Hamilton

Gene Valett*
Melissa Lutz*

Terri Uhlmeyer Mike Kerr Tom Pauling* (DOE)

Dave Fleming Earl Dowell

* ALARA committee member

Topic: Nitroaromatics identified during Storm Sewer construction

Background – On Saturday, May 18, 2002, DHO encountered TNT contaminated soils and a 12 inch CMP during excavation for the northern portion of the storm water drainage installation. The 2-3" TNT contaminated soil lens was located approximately 6 – 12 inches above the CMP (approximately 2 ft below the surface) and also at the end of the pipe. The eastern end of the CMP, approximately 2 – 3 feet, was removed. The remaining portion of the CMP, length unknown, contained water and was left in place. A qualitative TNT test was conducted on soil from both locations. Both samples had positive results. The approximately 2 cubic yards of material showing visible TNT contamination was placed on plastic and covered. The ditch was backfilled so as not to collect any water. DHO then moved about 150 feet south and started work again on the drainage, No additional suspect soils have been encountered as of this meeting.

DHO will be directed to excavate the remaining drainage under the observation of ES&H representative(s). Upon removal, the soils are to be made available for inspection. Any suspect TNT contaminated soils or debris will be removed and placed into a separate pile (sheet poly liner and cover). Any TNT-contaminated soils or debris in the excavation sidewalls or bottom will be removed to a distance not exceeding 3 feet and placed into the suspect pile (chasing soils beyond 3 feet of the trench requires approval from PM-Management and DOE). Soils removed that do not demonstrate TNT contamination will be placed into a "clean" stockpile or otherwise handled by DHO.

ES&H will sample the TNT-contaminated stockpile once excavation activities are completed. Final disposition will be burial on-site at a depth of at least 2 feet, pending analytical verification that a representative sample of the suspect material does not exceed subsurface criteria for 2,4,6-TNT (1400 mg/kg). The corrugated metal pipe encountered last weekend will be exposed and ES&H will sample the water for uranium and nitroaromatics. DHO will be notified if this water is to be managed or removed from the excavation based upon uranium KPA results. If uranium is less than 600 pCi/l, it can be discharged to the surface in accordance with ES&H procedures.

cc:

S. Anderson

M. Oaks

B. Moore (MDNR)

Becky Cato

From:

Earl Dowell

Sent:

To:

Thursday, May 30, 2002 5:14 PM
Steve Warren; Thomas Pauling; David Hixson; Terri Uhlmeyer; Melissa Lutz; Becky Cato David Fleming; James Harvey; Clark Oberlag
Stormwater Drainage - TNT Soil Removal and Culvert

Cc:

Subject:

TNT contaminated soils were removed today from the area previously discovered in the stormwater drainage, north end. Approximately 12 yards have been removed to date, now stored on and under poly sheeting in the former TSA region. As typical, much of the material removed is not nitros since cannot be efficiently separated during excavation. Approximately 30 feet of trenching was accomplished.

The culvert was found and 150 gallons of water removed and placed in drums upon secondary containment. KPA results non-detect at 0.7 pCi/L. Clark obtained filtered/unfiltered samples for offsite nitros analysis.

The exposed end of the culvert was surveyed with 44-9; interior/exterior results <60 cpm (<1000 dpm), and left in place.

DHO will begin trenching at the south end tomorrow, and work back towards the nitros area.

Please pass this info along to anyone I may have missed. Thanks

MK-FERGUSON COMPANY .

Client Sample ID: WM-D284-060202

HPLC

Lot-Sample #...: F2F040215-003 Work Order #...: E2E651AC Matrix.....: SOLID

Date Sampled...: 06/02/02 Date Received..: 06/04/02 Prep Date....: 06/12/02 Analysis Date..: 06/17/02

Prep Batch #...: 2162578

Dilution Factor: 1

* Moisture....: 17 Method.....: SW846 8330

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,3-Dinitrobenzene	ND	0.11	ug/g
2,4-Dinitrotoluene	ND	0.073	ug/g
2,6-Dinitrotoluene	ND	0.12	ug/g
Nitrobenzene	ND	0.097	ug/g
1,3,5-Trinitrobenzene	0.78	0.048	ug/g
2,4,6-Trinitrotoluene	750 B	0.097	ug/g
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dinitrobenzene	90	(69 - 111)	

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

MK-FERGUSON COMPANY

STL ST LOUIS

Client Sample ID: WM-D284-060202

HPLC

Lot-Sample #: F2F040215	-003 Work Order #: E2E652AC	Matrix SOLID
Date Sampled: 06/02/02	Date Received: 06/04/02	
Prep Date: 06/12/02	Analysis Date: 06/28/02	
Prep Batch #: 2162578	•	
Dilution Factor: 100		
& Mojetume 17	Wether SWOAC 0220	•

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
1,3-Dinitrobenzene	ND	11	ug/g	
2,4-Dinitrotoluene	ND	7.3	ug/g	
2,6-Dinitrotoluene	ND	12	ug/g	
Nitrobenzene	ND	9.7	ug/g	
1,3,5-Trinitrobenzene	ND	4.8	ug/g	
2,4,6-Trinitrotoluene	850	9.7	ug/g	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
1,2-Dinitrobenzene	0.0 DIL	(69 ~ 111)		

NOTE (S)

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

06/28/2002 13:53

MK-FERGUSON COMPANY

Client Sample ID: WM-D283-053002 Ward

SIL SI LUUIS

HPLC

Lot-Sample #: F Date Sampled: 0 Prep Date: 0 Prep Batch #: 2	5/30/02 6/06/02	Work Order #: Date Received: Analysis Date:	06/04/02	Matrix WATER
Dilution Factor: 1		Method:	SW846 8330	
PARAMETER		RESULT	REPORTING LIMIT	UNITS
2-Amino-4,6- dinitrotoluene		1200 B	0.030	ug/L
4-Amino-2,6- dinitrotoluene		670 R	0.030	ug/L
1,3-Dinitrobenzene		0.23	0.090	ug/L

4-Amino-2,6- dinitrotoluene	670 R	0.030	ug/L
1,3-Dinitrobenzene	0.23	0.090	uq/L
2,4-Dinitrotoluene	4.0	0.060	ug/L
2,6-Dinitrotoluene	ND	0.10	ug/L
Nitrobenzene	ND	0.080	ug/L
2-Nitrotoluene	ND	0.030	ug/L
3-Nitrotoluene	ND	0.030	ug/L
4-Nitrotoluene	ND	0.030	ug/L
1,3,5-Trinitrobenzene	2.2	0.040	ug/L
2,4,6-Trinitrotoluene	1600 B	0.080	ug/L
	PERCENT	RECOVERY	•
SURROGATE	RECOVERY	LIMITS	
1.2-Dinitrobenzene	89	(41 - 12	4)

NOTE (S):

E Estimated result. Result concentration exceeds the calibration range.

MK-FERGUSON COMPANY

Client Sample ID: WM-D283-053002

HPLC

Lot-Sample #: F2	2F040215-001	Work Order #:	E2E602AC	Matrix	WATER

Prep Batch #...: 2157228

Dilution Factor: 200 Method.....: SW846 8330

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
2-Amino-4,6-	820	6.0	ug/L
dinitrotoluene	•		-
4-Amino-2,6-	470	6.0	ug/L
dinitrotoluene			•
1,3-Dinitrobenzene	ND	18	ug/L
2,4-Dinitrotoluene	ND	12	ug/L
2,6-Dinitrotoluene	ND	20	ug/L
Nitrobenzene	ND	16	ug/L
2-Nitrotoluene	ND	6.0	ug/L
3-Nitrotoluene	ND	6.0	ug/L
4-Nitrotoluene	ND	6.0	ug/L
1,3,5-Trinitrobenzene	ND	8.0	ug/L
2,4,6-Trinitrotoluene	1200	16	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
1,2-Dinitrobenzene	0.0 DIL	(41 - 124	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.